Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

The Genomic Landscape of Endocrine-Resistant Advanced Breast Cancers.

Razavi P, Chang MT, Xu G, Bandlamudi C, Ross DS, Vasan N, Cai Y, Bielski CM, Donoghue MTA, Jonsson P, Penson A, Shen R, Pareja F, Kundra R, Middha S, Cheng ML, Zehir A, Kandoth C, Patel R, Huberman K, Smyth LM, Jhaveri K, Modi S, Traina TA, Dang C, Zhang W, Weigelt B, Li BT, Ladanyi M, Hyman DM, Schultz N, Robson ME, Hudis C, Brogi E, Viale A, Norton L, Dickler MN, Berger MF, Iacobuzio-Donahue CA, Chandarlapaty S, Scaltriti M, Reis-Filho JS, Solit DB, Taylor BS, Baselga J.

Cancer Cell. 2018 Sep 10;34(3):427-438.e6. doi: 10.1016/j.ccell.2018.08.008.

PMID:
30205045
2.

Loss of function of NF1 is a mechanism of acquired resistance to endocrine therapy in lobular breast cancer.

Sokol ES, Feng YX, Jin DX, Basudan A, Lee AV, Atkinson JM, Chen J, Stephens PJ, Frampton GM, Gupta PB, Ross JS, Chung JH, Oesterreich S, Ali SM, Hartmaier RJ.

Ann Oncol. 2019 Jan 1;30(1):115-123. doi: 10.1093/annonc/mdy497.

3.

Efficacy of SERD/SERM Hybrid-CDK4/6 Inhibitor Combinations in Models of Endocrine Therapy-Resistant Breast Cancer.

Wardell SE, Ellis MJ, Alley HM, Eisele K, VanArsdale T, Dann SG, Arndt KT, Primeau T, Griffin E, Shao J, Crowder R, Lai JP, Norris JD, McDonnell DP, Li S.

Clin Cancer Res. 2015 Nov 15;21(22):5121-5130. doi: 10.1158/1078-0432.CCR-15-0360. Epub 2015 May 19.

4.

Phosphatidylinositol 3-kinase pathway genomic alterations in 60,991 diverse solid tumors informs targeted therapy opportunities.

Millis SZ, Jardim DL, Albacker L, Ross JS, Miller VA, Ali SM, Kurzrock R.

Cancer. 2019 Apr 1;125(7):1185-1199. doi: 10.1002/cncr.31921. Epub 2018 Dec 24.

PMID:
30582752
5.

Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer.

Hartmaier RJ, Trabucco SE, Priedigkeit N, Chung JH, Parachoniak CA, Vanden Borre P, Morley S, Rosenzweig M, Gay LM, Goldberg ME, Suh J, Ali SM, Ross J, Leyland-Jones B, Young B, Williams C, Park B, Tsai M, Haley B, Peguero J, Callahan RD, Sachelarie I, Cho J, Atkinson JM, Bahreini A, Nagle AM, Puhalla SL, Watters RJ, Erdogan-Yildirim Z, Cao L, Oesterreich S, Mathew A, Lucas PC, Davidson NE, Brufsky AM, Frampton GM, Stephens PJ, Chmielecki J, Lee AV.

Ann Oncol. 2018 Apr 1;29(4):872-880. doi: 10.1093/annonc/mdy025.

6.

A targeted next-generation sequencing assay detects a high frequency of therapeutically targetable alterations in primary and metastatic breast cancers: implications for clinical practice.

Vasan N, Yelensky R, Wang K, Moulder S, Dzimitrowicz H, Avritscher R, Wang B, Wu Y, Cronin MT, Palmer G, Symmans WF, Miller VA, Stephens P, Pusztai L.

Oncologist. 2014 May;19(5):453-8. doi: 10.1634/theoncologist.2013-0377. Epub 2014 Apr 7.

7.

Immunohistochemical analysis of estrogen receptor in breast cancer with ESR1 mutations detected by hybrid capture-based next-generation sequencing.

Ross DS, Zehir A, Brogi E, Konno F, Krystel-Whittemore M, Edelweiss M, Berger MF, Toy W, Chandarlapaty S, Razavi P, Baselga J, Wen HY.

Mod Pathol. 2019 Jan;32(1):81-87. doi: 10.1038/s41379-018-0116-5. Epub 2018 Aug 29.

PMID:
30158597
8.

Targeted massively parallel sequencing of angiosarcomas reveals frequent activation of the mitogen activated protein kinase pathway.

Murali R, Chandramohan R, Möller I, Scholz SL, Berger M, Huberman K, Viale A, Pirun M, Socci ND, Bouvier N, Bauer S, Artl M, Schilling B, Schimming T, Sucker A, Schwindenhammer B, Grabellus F, Speicher MR, Schaller J, Hillen U, Schadendorf D, Mentzel T, Cheng DT, Wiesner T, Griewank KG.

Oncotarget. 2015 Nov 3;6(34):36041-52. doi: 10.18632/oncotarget.5936.

9.

Activating ESR1 mutations in hormone-resistant metastatic breast cancer.

Robinson DR, Wu YM, Vats P, Su F, Lonigro RJ, Cao X, Kalyana-Sundaram S, Wang R, Ning Y, Hodges L, Gursky A, Siddiqui J, Tomlins SA, Roychowdhury S, Pienta KJ, Kim SY, Roberts JS, Rae JM, Van Poznak CH, Hayes DF, Chugh R, Kunju LP, Talpaz M, Schott AF, Chinnaiyan AM.

Nat Genet. 2013 Dec;45(12):1446-51. doi: 10.1038/ng.2823. Epub 2013 Nov 3.

10.

Frequent ESR1 and CDK Pathway Copy-Number Alterations in Metastatic Breast Cancer.

Basudan A, Priedigkeit N, Hartmaier RJ, Sokol ES, Bahreini A, Watters RJ, Boisen MM, Bhargava R, Weiss KR, Karsten MM, Denkert C, Blohmer JU, Leone JP, Hamilton RL, Brufsky AM, Elishaev E, Lucas PC, Lee AV, Oesterreich S.

Mol Cancer Res. 2019 Feb;17(2):457-468. doi: 10.1158/1541-7786.MCR-18-0946. Epub 2018 Oct 24.

PMID:
30355675
11.

Nonamplification ERBB2 genomic alterations in 5605 cases of recurrent and metastatic breast cancer: An emerging opportunity for anti-HER2 targeted therapies.

Ross JS, Gay LM, Wang K, Ali SM, Chumsri S, Elvin JA, Bose R, Vergilio JA, Suh J, Yelensky R, Lipson D, Chmielecki J, Waintraub S, Leyland-Jones B, Miller VA, Stephens PJ.

Cancer. 2016 Sep 1;122(17):2654-62. doi: 10.1002/cncr.30102. Epub 2016 Jun 10.

12.

Constitutively active ESR1 mutations in gynecologic malignancies and clinical response to estrogen-receptor directed therapies.

Gaillard SL, Andreano KJ, Gay LM, Steiner M, Jorgensen MS, Davidson BA, Havrilesky LJ, Alvarez Secord A, Valea FA, Colon-Otero G, Zajchowski DA, Chang CY, McDonnell DP, Berchuck A, Elvin JA.

Gynecol Oncol. 2019 Apr 13. pii: S0090-8258(19)30505-0. doi: 10.1016/j.ygyno.2019.04.010. [Epub ahead of print]

PMID:
30987772
13.

Broad Detection of Alterations Predicted to Confer Lack of Benefit From EGFR Antibodies or Sensitivity to Targeted Therapy in Advanced Colorectal Cancer.

Rankin A, Klempner SJ, Erlich R, Sun JX, Grothey A, Fakih M, George TJ Jr, Lee J, Ross JS, Stephens PJ, Miller VA, Ali SM, Schrock AB.

Oncologist. 2016 Nov;21(11):1306-1314. doi: 10.1634/theoncologist.2016-0148. Epub 2016 Sep 28.

14.

The proteasome inhibitor Bortezomib (Velcade) as potential inhibitor of estrogen receptor-positive breast cancer.

Thaler S, Thiede G, Hengstler JG, Schad A, Schmidt M, Sleeman JP.

Int J Cancer. 2015 Aug 1;137(3):686-97. doi: 10.1002/ijc.29404. Epub 2015 Jan 8.

15.

Molecular profiling of hormone receptor-positive, HER2-negative breast cancers from patients treated with neoadjuvant endocrine therapy in the CARMINA 02 trial (UCBG-0609).

Liang X, Briaux A, Becette V, Benoist C, Boulai A, Chemlali W, Schnitzler A, Baulande S, Rivera S, Mouret-Reynier MA, Bouvet LV, De La Motte Rouge T, Lemonnier J, Lerebours F, Callens C.

J Hematol Oncol. 2018 Oct 11;11(1):124. doi: 10.1186/s13045-018-0670-9.

16.

Genomic Landscape and Endocrine-Resistant Subgroup in Estrogen Receptor-Positive, Progesterone Receptor-Negative, and HER2-Negative Breast Cancer.

Liu XY, Ma D, Xu XE, Jin X, Yu KD, Jiang YZ, Shao ZM.

Theranostics. 2018 Dec 8;8(22):6386-6399. doi: 10.7150/thno.29164. eCollection 2018.

17.

The forkhead transcription factor FOXM1 promotes endocrine resistance and invasiveness in estrogen receptor-positive breast cancer by expansion of stem-like cancer cells.

Bergamaschi A, Madak-Erdogan Z, Kim YJ, Choi YL, Lu H, Katzenellenbogen BS.

Breast Cancer Res. 2014 Sep 12;16(5):436. doi: 10.1186/s13058-014-0436-4.

18.

Estrogen receptor mutations and their role in breast cancer progression.

Alluri PG, Speers C, Chinnaiyan AM.

Breast Cancer Res. 2014 Dec 12;16(6):494. doi: 10.1186/s13058-014-0494-7. Review.

19.

Macrophage-elicited loss of estrogen receptor-α in breast cancer cells via involvement of MAPK and c-Jun at the ESR1 genomic locus.

Stossi F, Madak-Erdoğan Z, Katzenellenbogen BS.

Oncogene. 2012 Apr 5;31(14):1825-34. doi: 10.1038/onc.2011.370. Epub 2011 Aug 22.

20.

Endocrine resistance associated with activated ErbB system in breast cancer cells is reversed by inhibiting MAPK or PI3K/Akt signaling pathways.

Ghayad SE, Vendrell JA, Ben Larbi S, Dumontet C, Bieche I, Cohen PA.

Int J Cancer. 2010 Jan 15;126(2):545-62. doi: 10.1002/ijc.24750.

Supplemental Content

Support Center