Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98

1.

The repressor and co-activator HsfB1 regulates the major heat stress transcription factors in tomato.

Fragkostefanakis S, Simm S, El-Shershaby A, Hu Y, Bublak D, Mesihovic A, Darm K, Mishra SK, Tschiersch B, Theres K, Scharf C, Schleiff E, Scharf KD.

Plant Cell Environ. 2019 Mar;42(3):874-890. doi: 10.1111/pce.13434. Epub 2018 Oct 11.

PMID:
30187931
2.

HsfA2 Controls the Activity of Developmentally and Stress-Regulated Heat Stress Protection Mechanisms in Tomato Male Reproductive Tissues.

Fragkostefanakis S, Mesihovic A, Simm S, Paupière MJ, Hu Y, Paul P, Mishra SK, Tschiersch B, Theres K, Bovy A, Schleiff E, Scharf KD.

Plant Physiol. 2016 Apr;170(4):2461-77. doi: 10.1104/pp.15.01913. Epub 2016 Feb 25.

3.

DNA-binding and repressor function are prerequisites for the turnover of the tomato heat stress transcription factor HsfB1.

Röth S, Mirus O, Bublak D, Scharf KD, Schleiff E.

Plant J. 2017 Jan;89(1):31-44. doi: 10.1111/tpj.13317. Epub 2016 Nov 14.

4.

Arabidopsis HsfB1 and HsfB2b act as repressors of the expression of heat-inducible Hsfs but positively regulate the acquired thermotolerance.

Ikeda M, Mitsuda N, Ohme-Takagi M.

Plant Physiol. 2011 Nov;157(3):1243-54. doi: 10.1104/pp.111.179036. Epub 2011 Sep 9.

5.

Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors.

Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, Scharf KD, Tripp J, Weber C, Zielinski D, von Koskull-Döring P.

J Biosci. 2004 Dec;29(4):471-87. Review.

6.

Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato.

Hahn A, Bublak D, Schleiff E, Scharf KD.

Plant Cell. 2011 Feb;23(2):741-55. doi: 10.1105/tpc.110.076018. Epub 2011 Feb 9.

7.

Modulation of heat shock factors accompanies salicylic acid-mediated potentiation of Hsp70 in tomato seedlings.

Snyman M, Cronjé MJ.

J Exp Bot. 2008;59(8):2125-32. doi: 10.1093/jxb/ern075. Epub 2008 May 8.

8.

Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1.

Bharti K, Von Koskull-Döring P, Bharti S, Kumar P, Tintschl-Körbitzer A, Treuter E, Nover L.

Plant Cell. 2004 Jun;16(6):1521-35. Epub 2004 May 6.

9.

HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress.

Nishizawa-Yokoi A, Nosaka R, Hayashi H, Tainaka H, Maruta T, Tamoi M, Ikeda M, Ohme-Takagi M, Yoshimura K, Yabuta Y, Shigeoka S.

Plant Cell Physiol. 2011 May;52(5):933-45. doi: 10.1093/pcp/pcr045. Epub 2011 Apr 6.

PMID:
21471117
10.

Common and distinct functions of Arabidopsis class A1 and A2 heat shock factors in diverse abiotic stress responses and development.

Liu HC, Charng YY.

Plant Physiol. 2013 Sep;163(1):276-90. doi: 10.1104/pp.113.221168. Epub 2013 Jul 5.

11.

Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins.

Li M, Doll J, Weckermann K, Oecking C, Berendzen KW, Schöffl F.

Eur J Cell Biol. 2010 Feb-Mar;89(2-3):126-32. doi: 10.1016/j.ejcb.2009.10.012. Epub 2009 Nov 27.

PMID:
19945192
12.

Chaperone network composition in Solanum lycopersicum explored by transcriptome profiling and microarray meta-analysis.

Fragkostefanakis S, Simm S, Paul P, Bublak D, Scharf KD, Schleiff E.

Plant Cell Environ. 2015 Apr;38(4):693-709. doi: 10.1111/pce.12426. Epub 2014 Oct 1.

13.

A Potential Role for Mitochondrial Produced Reactive Oxygen Species in Salicylic Acid-Mediated Plant Acquired Thermotolerance.

Nie S, Yue H, Xing D.

Plant Physiol. 2015 Oct 15. pii: pp.00719.2015. doi: 10.1104/pp.15.00719. Epub 2015 Oct 15. Retraction in: Plant Physiol. 2016 Mar;170(3):1895.

14.
15.

Acquired thermotolerance independent of heat shock factor A1 (HsfA1), the master regulator of the heat stress response.

Liu HC, Charng YY.

Plant Signal Behav. 2012 May;7(5):547-50. doi: 10.4161/psb.19803. Epub 2012 Apr 20.

16.

Novel DnaJ Protein Facilitates Thermotolerance of Transgenic Tomatoes.

Wang G, Cai G, Xu N, Zhang L, Sun X, Guan J, Meng Q.

Int J Mol Sci. 2019 Jan 16;20(2). pii: E367. doi: 10.3390/ijms20020367.

17.

Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures.

Anfoka G, Moshe A, Fridman L, Amrani L, Rotem O, Kolot M, Zeidan M, Czosnek H, Gorovits R.

Sci Rep. 2016 Jan 21;6:19715. doi: 10.1038/srep19715. Erratum in: Sci Rep. 2016 May 11;6:25284.

18.

Overexpression of Arabidopsis HsfA1a enhances diverse stress tolerance by promoting stress-induced Hsp expression.

Qian J, Chen J, Liu YF, Yang LL, Li WP, Zhang LM.

Genet Mol Res. 2014 Feb 27;13(1):1233-43. doi: 10.4238/2014.February.27.8.

19.

Heat stress transcription factors from tomato can functionally replace HSF1 in the yeast Saccharomyces cerevisiae.

Boscheinen O, Lyck R, Queitsch C, Treuter E, Zimarino V, Scharf KD.

Mol Gen Genet. 1997 Jul;255(3):322-31.

PMID:
9268023
20.

Promoter specificity and interactions between early and late Arabidopsis heat shock factors.

Li M, Berendzen KW, Schöffl F.

Plant Mol Biol. 2010 Jul;73(4-5):559-67. doi: 10.1007/s11103-010-9643-2. Epub 2010 May 11.

Supplemental Content

Support Center