Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 78

1.

Urine-derived cells: a promising diagnostic tool in Fabry disease patients.

Slaats GG, Braun F, Hoehne M, Frech LE, Blomberg L, Benzing T, Schermer B, Rinschen MM, Kurschat CE.

Sci Rep. 2018 Jul 23;8(1):11042. doi: 10.1038/s41598-018-29240-w.

2.

Enzyme Replacement Therapy Clears Gb3 Deposits from a Podocyte Cell Culture Model of Fabry Disease but Fails to Restore Altered Cellular Signaling.

Braun F, Blomberg L, Brodesser S, Liebau MC, Schermer B, Benzing T, Kurschat CE.

Cell Physiol Biochem. 2019;52(5):1139-1150. doi: 10.33594/000000077.

3.

Correction of enzymatic and lysosomal storage defects in Fabry mice by adenovirus-mediated gene transfer.

Ziegler RJ, Yew NS, Li C, Cherry M, Berthelette P, Romanczuk H, Ioannou YA, Zeidner KM, Desnick RJ, Cheng SH.

Hum Gene Ther. 1999 Jul 1;10(10):1667-82.

PMID:
10428212
4.

Infusion of alpha-galactosidase A reduces tissue globotriaosylceramide storage in patients with Fabry disease.

Schiffmann R, Murray GJ, Treco D, Daniel P, Sellos-Moura M, Myers M, Quirk JM, Zirzow GC, Borowski M, Loveday K, Anderson T, Gillespie F, Oliver KL, Jeffries NO, Doo E, Liang TJ, Kreps C, Gunter K, Frei K, Crutchfield K, Selden RF, Brady RO.

Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):365-70.

5.

Sequencing and characterization of the porcine α-galactosidase A gene: towards the generation of a porcine model for Fabry disease.

Yoshimitsu M, Higuchi K, Fan X, Takao S, Medin JA, Tei C, Takenaka T.

Mol Biol Rep. 2011 Jun;38(5):3145-52. doi: 10.1007/s11033-010-9985-5. Epub 2010 Feb 4.

PMID:
20131008
6.

Long-term enzyme correction and lipid reduction in multiple organs of primary and secondary transplanted Fabry mice receiving transduced bone marrow cells.

Takenaka T, Murray GJ, Qin G, Quirk JM, Ohshima T, Qasba P, Clark K, Kulkarni AB, Brady RO, Medin JA.

Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7515-20.

7.

Altered dynamics of a lipid raft associated protein in a kidney model of Fabry disease.

Labilloy A, Youker RT, Bruns JR, Kukic I, Kiselyov K, Halfter W, Finegold D, do Monte SJ, Weisz OA.

Mol Genet Metab. 2014 Feb;111(2):184-92. doi: 10.1016/j.ymgme.2013.10.010. Epub 2013 Oct 19.

8.

Targeted urine microscopy in Anderson-Fabry disease: a cheap, sensitive and specific diagnostic technique.

Selvarajah M, Nicholls K, Hewitson TD, Becker GJ.

Nephrol Dial Transplant. 2011 Oct;26(10):3195-202. doi: 10.1093/ndt/gfr084. Epub 2011 Mar 7.

PMID:
21382994
9.

Characterization of Fabry mice treated with recombinant adeno-associated virus 2/8-mediated gene transfer.

Choi JO, Lee MH, Park HY, Jung SC.

J Biomed Sci. 2010 Apr 16;17:26. doi: 10.1186/1423-0127-17-26.

10.

Anderson-Fabry disease: developments in diagnosis and treatment.

Kes VB, Cesarik M, Zavoreo I, Madzar Z, Demarin V.

Acta Clin Croat. 2012 Sep;51(3):411-7. Review.

PMID:
23330407
11.

Long-term correction of globotriaosylceramide storage in Fabry mice by recombinant adeno-associated virus-mediated gene transfer.

Park J, Murray GJ, Limaye A, Quirk JM, Gelderman MP, Brady RO, Qasba P.

Proc Natl Acad Sci U S A. 2003 Mar 18;100(6):3450-4. Epub 2003 Mar 6.

12.

Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants.

Yam GH, Bosshard N, Zuber C, Steinmann B, Roth J.

Am J Physiol Cell Physiol. 2006 Apr;290(4):C1076-82.

13.

Anderson-Fabry disease: a multiorgan disease.

Tuttolomondo A, Pecoraro R, Simonetta I, Miceli S, Pinto A, Licata G.

Curr Pharm Des. 2013;19(33):5974-96. Review.

PMID:
23448451
14.

Safety and pharmacodynamic effects of a pharmacological chaperone on α-galactosidase A activity and globotriaosylceramide clearance in Fabry disease: report from two phase 2 clinical studies.

Germain DP, Giugliani R, Hughes DA, Mehta A, Nicholls K, Barisoni L, Jennette CJ, Bragat A, Castelli J, Sitaraman S, Lockhart DJ, Boudes PF.

Orphanet J Rare Dis. 2012 Nov 24;7:91. doi: 10.1186/1750-1172-7-91.

15.

Co-administration with the pharmacological chaperone AT1001 increases recombinant human α-galactosidase A tissue uptake and improves substrate reduction in Fabry mice.

Benjamin ER, Khanna R, Schilling A, Flanagan JJ, Pellegrino LJ, Brignol N, Lun Y, Guillen D, Ranes BE, Frascella M, Soska R, Feng J, Dungan L, Young B, Lockhart DJ, Valenzano KJ.

Mol Ther. 2012 Apr;20(4):717-26. doi: 10.1038/mt.2011.271. Epub 2012 Jan 3.

16.

Distribution of alpha-galactosidase A in normal human kidney and renal accumulation and distribution of recombinant alpha-galactosidase A in Fabry mice.

Christensen EI, Zhou Q, Sørensen SS, Rasmussen AK, Jacobsen C, Feldt-Rasmussen U, Nielsen R.

J Am Soc Nephrol. 2007 Mar;18(3):698-706. Epub 2007 Feb 7.

17.
19.

Globotriaosylceramide accumulation in the Fabry kidney is cleared from multiple cell types after enzyme replacement therapy.

Thurberg BL, Rennke H, Colvin RB, Dikman S, Gordon RE, Collins AB, Desnick RJ, O'Callaghan M.

Kidney Int. 2002 Dec;62(6):1933-46.

20.

Naked plasmid DNA-based alpha-galactosidase A gene transfer partially reduces systemic accumulation of globotriaosylceramide in Fabry mice.

Nakamura G, Maruyama H, Ishii S, Shimotori M, Kameda S, Kono T, Miyazaki J, Kulkarni AB, Gejyo F.

Mol Biotechnol. 2008 Feb;38(2):109-19. doi: 10.1007/s12033-007-9008-5. Epub 2007 Oct 13.

PMID:
18219591

Supplemental Content

Support Center