Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.

Establishing an Organotypic System for Investigating Multimodal Neural Repair Effects of Human Mesenchymal Stromal Stem Cells.

Thakor DK, Wang L, Benedict D, Kabatas S, Zafonte RD, Teng YD.

Curr Protoc Stem Cell Biol. 2018 Nov;47(1):e58. doi: 10.1002/cpsc.58. Epub 2018 Jul 18.

PMID:
30021049
2.

Defining recovery neurobiology of injured spinal cord by synthetic matrix-assisted hMSC implantation.

Ropper AE, Thakor DK, Han I, Yu D, Zeng X, Anderson JE, Aljuboori Z, Kim SW, Wang H, Sidman RL, Zafonte RD, Teng YD.

Proc Natl Acad Sci U S A. 2017 Jan 31;114(5):E820-E829. doi: 10.1073/pnas.1616340114. Epub 2017 Jan 17.

3.

Human Mesenchymal Stem Cells Protect Dorsal Root Ganglia from the Neurotoxic Effect of Cisplatin.

Scuteri A, Ravasi M, Monfrini M, Milano A, D'Amico G, Miloso M, Tredici G.

Anticancer Res. 2015 Oct;35(10):5383-9.

PMID:
26408700
4.

Effects of treating traumatic brain injury with collagen scaffolds and human bone marrow stromal cells on sprouting of corticospinal tract axons into the denervated side of the spinal cord.

Mahmood A, Wu H, Qu C, Xiong Y, Chopp M.

J Neurosurg. 2013 Feb;118(2):381-9. doi: 10.3171/2012.11.JNS12753. Epub 2012 Nov 30.

PMID:
23198801
5.

Spinal motor neurite outgrowth over glial scar inhibitors is enhanced by coculture with bone marrow stromal cells.

Wright KT, Uchida K, Bara JJ, Roberts S, El Masri W, Johnson WE.

Spine J. 2014 Aug 1;14(8):1722-33. doi: 10.1016/j.spinee.2014.01.021. Epub 2014 Jan 21.

PMID:
24462452
6.

Olig2-expressing Mesenchymal Stem Cells Enhance Functional Recovery after Contusive Spinal Cord Injury.

Park HW, Oh S, Lee KH, Lee BH, Chang MS.

Int J Stem Cells. 2018 Nov 30;11(2):177-186. doi: 10.15283/ijsc18071.

7.

Human mesenchymal stem/stromal cells suppress spinal inflammation in mice with contribution of pituitary adenylate cyclase-activating polypeptide (PACAP).

Tsumuraya T, Ohtaki H, Song D, Sato A, Watanabe J, Hiraizumi Y, Nakamachi T, Xu Z, Dohi K, Hashimoto H, Atsumi T, Shioda S.

J Neuroinflammation. 2015 Feb 22;12:35. doi: 10.1186/s12974-015-0252-5.

8.

Restorative benefits of transplanting human mesenchymal stromal cells overexpressing arginine decarboxylase genes after spinal cord injury.

Park YM, Han SH, Seo SK, Park KA, Lee WT, Lee JE.

Cytotherapy. 2015 Jan;17(1):25-37. doi: 10.1016/j.jcyt.2014.08.006. Epub 2014 Oct 22.

PMID:
25442787
10.

BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury.

Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, Honmou O, Kocsis JD.

J Neurosci. 2009 Nov 25;29(47):14932-41. doi: 10.1523/JNEUROSCI.2769-09.2009.

11.

Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair.

Fang KM, Chen JK, Hung SC, Chen MC, Wu YT, Wu TJ, Lin HI, Chen CH, Cheng H, Yang CS, Tzeng SF.

PLoS One. 2010 Dec 20;5(12):e15299. doi: 10.1371/journal.pone.0015299.

12.

Expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs) using a two-phase liquid/liquid system.

Hanga MP, Murasiewicz H, Pacek AW, Nienow AW, Coopman K, Hewitt CJ.

J Chem Technol Biotechnol. 2017 Jul;92(7):1577-1589. doi: 10.1002/jctb.5279. Epub 2017 Apr 24.

13.

A biological study establishing the endotoxin limit for in vitro proliferation of human mesenchymal stem cells.

Nomura Y, Fukui C, Morishita Y, Haishima Y.

Regen Ther. 2017 Sep 9;7:45-51. doi: 10.1016/j.reth.2017.08.004. eCollection 2017 Dec.

14.

Heparan Sulfate Proteoglycans as Drivers of Neural Progenitors Derived From Human Mesenchymal Stem Cells.

Okolicsanyi RK, Oikari LE, Yu C, Griffiths LR, Haupt LM.

Front Mol Neurosci. 2018 Apr 24;11:134. doi: 10.3389/fnmol.2018.00134. eCollection 2018.

15.

Ischemic brain injury: a consortium analysis of key factors involved in mesenchymal stem cell-mediated inflammatory reduction.

McGuckin CP, Jurga M, Miller AM, Sarnowska A, Wiedner M, Boyle NT, Lynch MA, Jablonska A, Drela K, Lukomska B, Domanska-Janik K, Kenner L, Moriggl R, Degoul O, Perruisseau-Carrier C, Forraz N.

Arch Biochem Biophys. 2013 Jun;534(1-2):88-97. doi: 10.1016/j.abb.2013.02.005. Epub 2013 Mar 4.

PMID:
23466243
16.

Tissue engineered regeneration of completely transected spinal cord using human mesenchymal stem cells.

Kang KN, Kim DY, Yoon SM, Lee JY, Lee BN, Kwon JS, Seo HW, Lee IW, Shin HC, Kim YM, Kim HS, Kim JH, Min BH, Lee HB, Kim MS.

Biomaterials. 2012 Jun;33(19):4828-35. doi: 10.1016/j.biomaterials.2012.03.043. Epub 2012 Apr 10.

PMID:
22498301
17.

Effects of human mesenchymal stem cell transplantation combined with polymer on functional recovery following spinal cord hemisection in rats.

Choi JS, Leem JW, Lee KH, Kim SS, Suh-Kim H, Jung SJ, Kim UJ, Lee BH.

Korean J Physiol Pharmacol. 2012 Dec;16(6):405-11. doi: 10.4196/kjpp.2012.16.6.405. Epub 2012 Dec 10.

18.

Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat.

Cízková D, Rosocha J, Vanický I, Jergová S, Cízek M.

Cell Mol Neurobiol. 2006 Oct-Nov;26(7-8):1167-80. Epub 2006 Jul 29.

PMID:
16897366
19.

[In vitro interaction of human pancreatic cancer cells and rat dorsal root ganglia: a co-culture model].

Liu ZS, Wang Y, Li Q, Zhang SL, Shi YR.

Zhonghua Zhong Liu Za Zhi. 2012 Apr;34(4):259-63. doi: 10.3760/cma.j.issn.0253-3766.2012.04.005. Chinese.

PMID:
22781036
20.

Neuroprotective Potential and Paracrine Activity of Stromal Vs. Culture-Expanded hMSC Derived from Wharton Jelly under Co-Cultured with Hippocampal Organotypic Slices.

Dabrowska S, Sypecka J, Jablonska A, Strojek L, Wielgos M, Domanska-Janik K, Sarnowska A.

Mol Neurobiol. 2018 Jul;55(7):6021-6036. doi: 10.1007/s12035-017-0802-1. Epub 2017 Nov 13.

Supplemental Content

Support Center