Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 88

1.

Effects of erythropoietin on fibroblast growth factor 23 in mice and humans.

Hanudel MR, Eisenga MF, Rappaport M, Chua K, Qiao B, Jung G, Gabayan V, Gales B, Ramos G, de Jong MA, van Zanden JJ, de Borst MH, Bakker SJL, Nemeth E, Salusky IB, Gaillard CAJM, Ganz T.

Nephrol Dial Transplant. 2018 Jul 10. doi: 10.1093/ndt/gfy189. [Epub ahead of print]

PMID:
30007314
2.

Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men.

Daryadel A, Bettoni C, Haider T, Imenez Silva PH, Schnitzbauer U, Pastor-Arroyo EM, Wenger RH, Gassmann M, Wagner CA.

Pflugers Arch. 2018 Oct;470(10):1569-1582. doi: 10.1007/s00424-018-2171-7. Epub 2018 Jul 2.

PMID:
29961920
3.

Effects of dietary iron intake and chronic kidney disease on fibroblast growth factor 23 metabolism in wild-type and hepcidin knockout mice.

Hanudel MR, Chua K, Rappaport M, Gabayan V, Valore E, Goltzman D, Ganz T, Nemeth E, Salusky IB.

Am J Physiol Renal Physiol. 2016 Dec 1;311(6):F1369-F1377. doi: 10.1152/ajprenal.00281.2016. Epub 2016 Oct 12.

4.

Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production.

David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, Zumbrennen-Bullough KB, Sun CC, Lin HY, Babitt JL, Wolf M.

Kidney Int. 2016 Jan;89(1):135-46. doi: 10.1038/ki.2015.290. Epub 2016 Jan 4.

5.

The EPO-FGF23 Signaling Pathway in Erythroid Progenitor Cells: Opening a New Area of Research.

van Vuren AJ, Gaillard CAJM, Eisenga MF, van Wijk R, van Beers EJ.

Front Physiol. 2019 Mar 26;10:304. doi: 10.3389/fphys.2019.00304. eCollection 2019. Review.

6.

FGF23 expression in rodents is directly induced via erythropoietin after inhibition of hypoxia inducible factor proline hydroxylase.

Flamme I, Ellinghaus P, Urrego D, Krüger T.

PLoS One. 2017 Oct 26;12(10):e0186979. doi: 10.1371/journal.pone.0186979. eCollection 2017.

7.

Update on fibroblast growth factor 23 in chronic kidney disease.

Wolf M.

Kidney Int. 2012 Oct;82(7):737-47. doi: 10.1038/ki.2012.176. Epub 2012 May 23. Review.

8.

Spleen contributes significantly to increased circulating levels of fibroblast growth factor 23 in response to lipopolysaccharide-induced inflammation.

Bansal S, Friedrichs WE, Velagapudi C, Feliers D, Khazim K, Horn D, Cornell JE, Werner SL, Fanti P.

Nephrol Dial Transplant. 2017 Jun 1;32(6):960-968. doi: 10.1093/ndt/gfw376. Erratum in: Nephrol Dial Transplant. 2017 Mar 1;32(3):583.

9.

Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease.

Wolf M, White KE.

Curr Opin Nephrol Hypertens. 2014 Jul;23(4):411-9. doi: 10.1097/01.mnh.0000447020.74593.6f. Review.

10.

Dietary phosphate restriction suppresses phosphaturia but does not prevent FGF23 elevation in a mouse model of chronic kidney disease.

Zhang S, Gillihan R, He N, Fields T, Liu S, Green T, Stubbs JR.

Kidney Int. 2013 Oct;84(4):713-21. doi: 10.1038/ki.2013.194. Epub 2013 May 22.

11.

Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease.

Durlacher-Betzer K, Hassan A, Levi R, Axelrod J, Silver J, Naveh-Many T.

Kidney Int. 2018 Aug;94(2):315-325. doi: 10.1016/j.kint.2018.02.026. Epub 2018 May 31.

PMID:
29861060
12.

Longitudinal evaluation of FGF23 changes and mineral metabolism abnormalities in a mouse model of chronic kidney disease.

Stubbs JR, He N, Idiculla A, Gillihan R, Liu S, David V, Hong Y, Quarles LD.

J Bone Miner Res. 2012 Jan;27(1):38-46. doi: 10.1002/jbmr.516.

13.

The hypoxia inducible factor/erythropoietin (EPO)/EPO receptor pathway is disturbed in a rat model of chronic kidney disease related anemia.

Landau D, London L, Bandach I, Segev Y.

PLoS One. 2018 May 8;13(5):e0196684. doi: 10.1371/journal.pone.0196684. eCollection 2018.

15.

Augmented Fibroblast Growth Factor-23 Secretion in Bone Locally Contributes to Impaired Bone Mineralization in Chronic Kidney Disease in Mice.

Andrukhova O, Schüler C, Bergow C, Petric A, Erben RG.

Front Endocrinol (Lausanne). 2018 Jun 11;9:311. doi: 10.3389/fendo.2018.00311. eCollection 2018.

16.

Inhibition of fibroblast growth factor 23 (FGF23) signaling rescues renal anemia.

Agoro R, Montagna A, Goetz R, Aligbe O, Singh G, Coe LM, Mohammadi M, Rivella S, Sitara D.

FASEB J. 2018 Jul;32(7):3752-3764. doi: 10.1096/fj.201700667R. Epub 2018 Feb 26.

PMID:
29481308
17.

FGF23, Biomarker or Target?

Rodelo-Haad C, Santamaria R, Muñoz-Castañeda JR, Pendón-Ruiz de Mier MV, Martin-Malo A, Rodriguez M.

Toxins (Basel). 2019 Mar 22;11(3). pii: E175. doi: 10.3390/toxins11030175. Review.

18.

Parathyroid function in chronic kidney disease: role of FGF23-Klotho axis.

Koizumi M, Komaba H, Fukagawa M.

Contrib Nephrol. 2013;180:110-23. doi: 10.1159/000346791. Epub 2013 May 3. Review.

PMID:
23652554
19.

FGF23 induces left ventricular hypertrophy.

Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M.

J Clin Invest. 2011 Nov;121(11):4393-408. doi: 10.1172/JCI46122. Epub 2011 Oct 10.

20.

Acute blood loss stimulates fibroblast growth factor 23 production.

Rabadi S, Udo I, Leaf DE, Waikar SS, Christov M.

Am J Physiol Renal Physiol. 2018 Jan 1;314(1):F132-F139. doi: 10.1152/ajprenal.00081.2017. Epub 2017 Sep 6.

Supplemental Content

Support Center