Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 99

1.

Titin-based mechanosensing modulates muscle hypertrophy.

van der Pijl R, Strom J, Conijn S, Lindqvist J, Labeit S, Granzier H, Ottenheijm C.

J Cachexia Sarcopenia Muscle. 2018 Oct;9(5):947-961. doi: 10.1002/jcsm.12319. Epub 2018 Jul 5.

2.

Alternative Splicing of Titin Restores Diastolic Function in an HFpEF-Like Genetic Murine Model (TtnΔIAjxn).

Bull M, Methawasin M, Strom J, Nair P, Hutchinson K, Granzier H.

Circ Res. 2016 Sep 2;119(6):764-72. doi: 10.1161/CIRCRESAHA.116.308904. Epub 2016 Jul 28.

3.

Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm (20ΔRRM) Mice.

Pulcastro HC, Awinda PO, Methawasin M, Granzier H, Dong W, Tanner BC.

Front Physiol. 2016 Jul 29;7:322. doi: 10.3389/fphys.2016.00322. eCollection 2016.

4.

Differences in titin segmental elongation between passive and active stretch in skeletal muscle.

DuVall MM, Jinha A, Schappacher-Tilp G, Leonard TR, Herzog W.

J Exp Biol. 2017 Dec 1;220(Pt 23):4418-4425. doi: 10.1242/jeb.160762. Epub 2017 Oct 2.

5.

RBM20, a potential target for treatment of cardiomyopathy via titin isoform switching.

Guo W, Sun M.

Biophys Rev. 2018 Feb;10(1):15-25. doi: 10.1007/s12551-017-0267-5. Epub 2017 Jun 2. Review.

6.

Alternative Splicing Regulator RBM20 and Cardiomyopathy.

Watanabe T, Kimura A, Kuroyanagi H.

Front Mol Biosci. 2018 Nov 28;5:105. doi: 10.3389/fmolb.2018.00105. eCollection 2018. Review.

7.

Titin kinase is an inactive pseudokinase scaffold that supports MuRF1 recruitment to the sarcomeric M-line.

Bogomolovas J, Gasch A, Simkovic F, Rigden DJ, Labeit S, Mayans O.

Open Biol. 2014 May;4(5):140041. doi: 10.1098/rsob.140041.

9.

Increased myocardial stiffness due to cardiac titin isoform switching in a mouse model of volume overload limits eccentric remodeling.

Hutchinson KR, Saripalli C, Chung CS, Granzier H.

J Mol Cell Cardiol. 2015 Feb;79:104-14. doi: 10.1016/j.yjmcc.2014.10.020. Epub 2014 Nov 8.

10.

Experimentally increasing titin compliance in a novel mouse model attenuates the Frank-Starling mechanism but has a beneficial effect on diastole.

Methawasin M, Hutchinson KR, Lee EJ, Smith JE 3rd, Saripalli C, Hidalgo CG, Ottenheijm CA, Granzier H.

Circulation. 2014 May 13;129(19):1924-36. doi: 10.1161/CIRCULATIONAHA.113.005610. Epub 2014 Mar 5.

11.

Forkhead box O1 and muscle RING finger 1 protein expression in atrophic and hypertrophic denervated mouse skeletal muscle.

Fjällström AK, Evertsson K, Norrby M, Tågerud S.

J Mol Signal. 2014 Sep 24;9:9. doi: 10.1186/1750-2187-9-9. eCollection 2014.

12.

Deleting titin's I-band/A-band junction reveals critical roles for titin in biomechanical sensing and cardiac function.

Granzier HL, Hutchinson KR, Tonino P, Methawasin M, Li FW, Slater RE, Bull MM, Saripalli C, Pappas CT, Gregorio CC, Smith JE 3rd.

Proc Natl Acad Sci U S A. 2014 Oct 7;111(40):14589-94. doi: 10.1073/pnas.1411493111. Epub 2014 Sep 22.

13.

Titin-based mechanosensing and signaling: role in diaphragm atrophy during unloading?

Ottenheijm CA, van Hees HW, Heunks LM, Granzier H.

Am J Physiol Lung Cell Mol Physiol. 2011 Feb;300(2):L161-6. doi: 10.1152/ajplung.00288.2010. Epub 2010 Nov 12. Review.

14.

Comparative decline of the protein profiles of nebulin in response to denervation in skeletal muscle.

Wei JH, Chang NC, Chen SP, Geraldine P, Jayakumar T, Fong TH.

Biochem Biophys Res Commun. 2015 Oct 9;466(1):95-102. doi: 10.1016/j.bbrc.2015.08.114. Epub 2015 Aug 29.

PMID:
26325472
15.

Titin stiffness modifies the force-generating region of muscle sarcomeres.

Li Y, Lang P, Linke WA.

Sci Rep. 2016 Apr 15;6:24492. doi: 10.1038/srep24492.

16.

Removal of immunoglobulin-like domains from titin's spring segment alters titin splicing in mouse skeletal muscle and causes myopathy.

Buck D, Smith JE 3rd, Chung CS, Ono Y, Sorimachi H, Labeit S, Granzier HL.

J Gen Physiol. 2014 Feb;143(2):215-30. doi: 10.1085/jgp.201311129.

17.

Reducing RBM20 activity improves diastolic dysfunction and cardiac atrophy.

Hinze F, Dieterich C, Radke MH, Granzier H, Gotthardt M.

J Mol Med (Berl). 2016 Dec;94(12):1349-1358. Epub 2016 Nov 26.

18.

Physiological Mechanisms of Eccentric Contraction and Its Applications: A Role for the Giant Titin Protein.

Hessel AL, Lindstedt SL, Nishikawa KC.

Front Physiol. 2017 Feb 9;8:70. doi: 10.3389/fphys.2017.00070. eCollection 2017. Review.

19.

Effects of activation on the elastic properties of intact soleus muscles with a deletion in titin.

Monroy JA, Powers KL, Pace CM, Uyeno T, Nishikawa KC.

J Exp Biol. 2017 Mar 1;220(Pt 5):828-836. doi: 10.1242/jeb.139717. Epub 2016 Dec 19.

20.

Shortening of the elastic tandem immunoglobulin segment of titin leads to diastolic dysfunction.

Chung CS, Hutchinson KR, Methawasin M, Saripalli C, Smith JE 3rd, Hidalgo CG, Luo X, Labeit S, Guo C, Granzier HL.

Circulation. 2013 Jul 2;128(1):19-28. doi: 10.1161/CIRCULATIONAHA.112.001268. Epub 2013 May 24.

Supplemental Content

Support Center