Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

Identification of putative regulatory regions and transcription factors associated with intramuscular fat content traits.

Cesar ASM, Regitano LCA, Reecy JM, Poleti MD, Oliveira PSN, de Oliveira GB, Moreira GCM, Mudadu MA, Tizioto PC, Koltes JE, Fritz-Waters E, Kramer L, Garrick D, Beiki H, Geistlinger L, Mourão GB, Zerlotini A, Coutinho LL.

BMC Genomics. 2018 Jun 27;19(1):499. doi: 10.1186/s12864-018-4871-y.

2.

Expression of fat deposition and fat removal genes is associated with intramuscular fat content in longissimus dorsi muscle of Korean cattle steers.

Jeong J, Kwon EG, Im SK, Seo KS, Baik M.

J Anim Sci. 2012 Jun;90(6):2044-53. doi: 10.2527/jas.2011-4753. Epub 2012 Jan 20.

PMID:
22266990
3.

Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data.

Muñoz M, Rodríguez MC, Alves E, Folch JM, Ibañez-Escriche N, Silió L, Fernández AI.

BMC Genomics. 2013 Dec 2;14:845. doi: 10.1186/1471-2164-14-845.

4.

Dynamic transcriptome and DNA methylome analyses on longissimus dorsi to identify genes underlying intramuscular fat content in pigs.

Wang Y, Ma C, Sun Y, Li Y, Kang L, Jiang Y.

BMC Genomics. 2017 Oct 12;18(1):780. doi: 10.1186/s12864-017-4201-9.

5.

TRIENNIAL GROWTH AND DEVELOPMENT SYMPOSIUM: Molecular mechanisms related to bovine intramuscular fat deposition in the longissimus muscle.

Baik M, Kang HJ, Park SJ, Na SW, Piao M, Kim SY, Fassah DM, Moon YS.

J Anim Sci. 2017 May;95(5):2284-2303. doi: 10.2527/jas.2016.1160. Review.

PMID:
28727015
6.

A marker-derived gene network reveals the regulatory role of PPARGC1A, HNF4G, and FOXP3 in intramuscular fat deposition of beef cattle.

Ramayo-Caldas Y, Fortes MR, Hudson NJ, Porto-Neto LR, Bolormaa S, Barendse W, Kelly M, Moore SS, Goddard ME, Lehnert SA, Reverter A.

J Anim Sci. 2014 Jul;92(7):2832-45. doi: 10.2527/jas.2013-7484. Epub 2014 Apr 28.

PMID:
24778332
7.

Integrative analysis of microRNAs and mRNAs revealed regulation of composition and metabolism in Nelore cattle.

Oliveira GB, Regitano LCA, Cesar ASM, Reecy JM, Degaki KY, Poleti MD, Felício AM, Koltes JE, Coutinho LL.

BMC Genomics. 2018 Feb 7;19(1):126. doi: 10.1186/s12864-018-4514-3.

8.

Variation in the IGF2 gene promoter region is associated with intramuscular fat content in porcine skeletal muscle.

Aslan O, Hamill RM, Davey G, McBryan J, Mullen AM, Gispert M, Sweeney T.

Mol Biol Rep. 2012 Apr;39(4):4101-10. doi: 10.1007/s11033-011-1192-5. Epub 2011 Jul 21.

PMID:
21779802
9.

Increased expression of thyroid hormone responsive protein (THRSP) is the result but not the cause of higher intramuscular fat content in cattle.

Schering L, Albrecht E, Komolka K, Kühn C, Maak S.

Int J Biol Sci. 2017 Apr 10;13(5):532-544. doi: 10.7150/ijbs.18775. eCollection 2017.

10.

Identification of differentially expressed genes and pathways for intramuscular fat deposition in pectoralis major tissues of fast-and slow-growing chickens.

Cui HX, Liu RR, Zhao GP, Zheng MQ, Chen JL, Wen J.

BMC Genomics. 2012 May 30;13:213. doi: 10.1186/1471-2164-13-213.

11.

Cis-regulatory variations: a study of SNPs around genes showing cis-linkage in segregating mouse populations.

GuhaThakurta D, Xie T, Anand M, Edwards SW, Li G, Wang SS, Schadt EE.

BMC Genomics. 2006 Sep 15;7:235.

12.

Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans.

Rotival M, Zeller T, Wild PS, Maouche S, Szymczak S, Schillert A, Castagné R, Deiseroth A, Proust C, Brocheton J, Godefroy T, Perret C, Germain M, Eleftheriadis M, Sinning CR, Schnabel RB, Lubos E, Lackner KJ, Rossmann H, Münzel T, Rendon A; Cardiogenics Consortium, Erdmann J, Deloukas P, Hengstenberg C, Diemert P, Montalescot G, Ouwehand WH, Samani NJ, Schunkert H, Tregouet DA, Ziegler A, Goodall AH, Cambien F, Tiret L, Blankenberg S.

PLoS Genet. 2011 Dec;7(12):e1002367. doi: 10.1371/journal.pgen.1002367. Epub 2011 Dec 1.

13.

Integrated genomic approaches to identification of candidate genes underlying metabolic and cardiovascular phenotypes in the spontaneously hypertensive rat.

Morrissey C, Grieve IC, Heinig M, Atanur S, Petretto E, Pravenec M, Hubner N, Aitman TJ.

Physiol Genomics. 2011 Nov 7;43(21):1207-18. doi: 10.1152/physiolgenomics.00210.2010. Epub 2011 Aug 16.

14.

From SNP co-association to RNA co-expression: novel insights into gene networks for intramuscular fatty acid composition in porcine.

Ramayo-Caldas Y, Ballester M, Fortes MR, Esteve-Codina A, Castelló A, Noguera JL, Fernández AI, Pérez-Enciso M, Reverter A, Folch JM.

BMC Genomics. 2014 Mar 26;15:232. doi: 10.1186/1471-2164-15-232.

15.

Putative regulatory factors associated with intramuscular fat content.

Cesar AS, Regitano LC, Koltes JE, Fritz-Waters ER, Lanna DP, Gasparin G, Mourão GB, Oliveira PS, Reecy JM, Coutinho LL.

PLoS One. 2015 Jun 4;10(6):e0128350. doi: 10.1371/journal.pone.0128350. eCollection 2015.

16.

Expression profiles of key transcription factors involved in lipid metabolism in Beijing-You chickens.

Fu RQ, Liu RR, Zhao GP, Zheng MQ, Chen JL, Wen J.

Gene. 2014 Mar 1;537(1):120-5. doi: 10.1016/j.gene.2013.07.109. Epub 2013 Oct 5.

PMID:
24100085
17.

Intramuscular fat content in meat-producing animals: development, genetic and nutritional control, and identification of putative markers.

Hocquette JF, Gondret F, Baéza E, Médale F, Jurie C, Pethick DW.

Animal. 2010 Feb;4(2):303-19. doi: 10.1017/S1751731109991091.

PMID:
22443885
18.

Comparing the mRNA expression profile and the genetic determinism of intramuscular fat traits in the porcine gluteus medius and longissimus dorsi muscles.

González-Prendes R, Quintanilla R, Mármol-Sánchez E, Pena RN, Ballester M, Cardoso TF, Manunza A, Casellas J, Cánovas Á, Díaz I, Noguera JL, Castelló A, Mercadé A, Amills M.

BMC Genomics. 2019 Mar 4;20(1):170. doi: 10.1186/s12864-019-5557-9.

19.

Weighted gene coexpression network analysis identifies specific transcriptional modules and hub genes related to intramuscular fat traits in chicken breast muscle.

Li G, Zhao Y, Li Y, Chen Y, Jin W, Sun G, Han R, Tian Y, Li H, Kang X.

J Cell Biochem. 2019 Apr 1. doi: 10.1002/jcb.28636. [Epub ahead of print]

PMID:
30937957
20.

Identification of Candidate Genes and Regulatory Factors Underlying Intramuscular Fat Content Through Longissimus Dorsi Transcriptome Analyses in Heavy Iberian Pigs.

Muñoz M, García-Casco JM, Caraballo C, Fernández-Barroso MÁ, Sánchez-Esquiliche F, Gómez F, Rodríguez MDC, Silió L.

Front Genet. 2018 Dec 4;9:608. doi: 10.3389/fgene.2018.00608. eCollection 2018.

Supplemental Content

Support Center