Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 78

1.

N-terminal acetylation: an essential protein modification emerges as an important regulator of stress responses.

Linster E, Wirtz M.

J Exp Bot. 2018 Aug 31;69(19):4555-4568. doi: 10.1093/jxb/ery241.

PMID:
29945174
2.

Protein N-terminal acetyltransferases act as N-terminal propionyltransferases in vitro and in vivo.

Foyn H, Van Damme P, Støve SI, Glomnes N, Evjenth R, Gevaert K, Arnesen T.

Mol Cell Proteomics. 2013 Jan;12(1):42-54. doi: 10.1074/mcp.M112.019299. Epub 2012 Oct 4.

3.

Probing the interaction between NatA and the ribosome for co-translational protein acetylation.

Magin RS, Deng S, Zhang H, Cooperman B, Marmorstein R.

PLoS One. 2017 Oct 10;12(10):e0186278. doi: 10.1371/journal.pone.0186278. eCollection 2017.

4.

First Things First: Vital Protein Marks by N-Terminal Acetyltransferases.

Aksnes H, Drazic A, Marie M, Arnesen T.

Trends Biochem Sci. 2016 Sep;41(9):746-760. doi: 10.1016/j.tibs.2016.07.005. Epub 2016 Aug 3. Review.

5.

Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis.

Linster E, Stephan I, Bienvenut WV, Maple-Grødem J, Myklebust LM, Huber M, Reichelt M, Sticht C, Møller SG, Meinnel T, Arnesen T, Giglione C, Hell R, Wirtz M.

Nat Commun. 2015 Jul 17;6:7640. doi: 10.1038/ncomms8640.

6.

Co-translational, Post-translational, and Non-catalytic Roles of N-Terminal Acetyltransferases.

Aksnes H, Ree R, Arnesen T.

Mol Cell. 2019 Mar 21;73(6):1097-1114. doi: 10.1016/j.molcel.2019.02.007. Epub 2019 Mar 13. Review.

PMID:
30878283
7.

Spotlight on protein N-terminal acetylation.

Ree R, Varland S, Arnesen T.

Exp Mol Med. 2018 Jul 27;50(7):90. doi: 10.1038/s12276-018-0116-z. Review.

8.

NatF contributes to an evolutionary shift in protein N-terminal acetylation and is important for normal chromosome segregation.

Van Damme P, Hole K, Pimenta-Marques A, Helsens K, Vandekerckhove J, Martinho RG, Gevaert K, Arnesen T.

PLoS Genet. 2011 Jul;7(7):e1002169. doi: 10.1371/journal.pgen.1002169. Epub 2011 Jul 7.

9.

From start to finish: amino-terminal protein modifications as degradation signals in plants.

Gibbs DJ, Bailey M, Tedds HM, Holdsworth MJ.

New Phytol. 2016 Sep;211(4):1188-94. doi: 10.1111/nph.14105. Epub 2016 Jul 21. Review.

10.

Control of protein degradation by N-terminal acetylation and the N-end rule pathway.

Nguyen KT, Mun SH, Lee CS, Hwang CS.

Exp Mol Med. 2018 Jul 27;50(7):91. doi: 10.1038/s12276-018-0097-y. Review.

11.

N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins.

Polevoda B, Sherman F.

J Mol Biol. 2003 Jan 24;325(4):595-622. Review.

PMID:
12507466
12.

Composition and function of the eukaryotic N-terminal acetyltransferase subunits.

Polevoda B, Sherman F.

Biochem Biophys Res Commun. 2003 Aug 15;308(1):1-11. Review.

PMID:
12890471
13.

Protein N-terminal acetyltransferases: when the start matters.

Starheim KK, Gevaert K, Arnesen T.

Trends Biochem Sci. 2012 Apr;37(4):152-61. doi: 10.1016/j.tibs.2012.02.003. Epub 2012 Mar 7. Review.

PMID:
22405572
14.

Characterization of Evolutionarily Conserved Trypanosoma cruzi NatC and NatA-N-Terminal Acetyltransferase Complexes.

Ochaya S, Franzén O, Buhwa DA, Foyn H, Butler CE, Stove SI, Tyler KM, Arnesen T, Matovu E, Åslund L, Andersson B.

J Parasitol Res. 2019 Mar 6;2019:6594212. doi: 10.1155/2019/6594212. eCollection 2019.

15.

Characterization of N-terminal protein modifications in Pseudomonas aeruginosa PA14.

Ouidir T, Jarnier F, Cosette P, Jouenne T, Hardouin J.

J Proteomics. 2015 Jan 30;114:214-25. doi: 10.1016/j.jprot.2014.11.006. Epub 2014 Nov 21.

PMID:
25464366
16.

Implications for the evolution of eukaryotic amino-terminal acetyltransferase (NAT) enzymes from the structure of an archaeal ortholog.

Liszczak G, Marmorstein R.

Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14652-7. doi: 10.1073/pnas.1310365110. Epub 2013 Aug 19.

17.

Quantitative N-Terminal Footprinting of Pathogenic Mycobacteria Reveals Differential Protein Acetylation.

Thompson CR, Champion MM, Champion PA.

J Proteome Res. 2018 Sep 7;17(9):3246-3258. doi: 10.1021/acs.jproteome.8b00373. Epub 2018 Aug 16.

18.

Microscopy-based Saccharomyces cerevisiae complementation model reveals functional conservation and redundancy of N-terminal acetyltransferases.

Osberg C, Aksnes H, Ninzima S, Marie M, Arnesen T.

Sci Rep. 2016 Aug 24;6:31627. doi: 10.1038/srep31627.

19.

New links between protein N-terminal acetylation, dauer diapause, and the insulin/IGF-1 signaling pathway in Caenorhabditis elegans.

Warnhoff K, Kornfeld K.

Worm. 2015 Mar 11;4(2):e1023498. doi: 10.1080/21624054.2015.1023498. eCollection 2015 Apr-Jun.

20.

Dependence of ORC silencing function on NatA-mediated Nalpha acetylation in Saccharomyces cerevisiae.

Geissenhöner A, Weise C, Ehrenhofer-Murray AE.

Mol Cell Biol. 2004 Dec;24(23):10300-12.

Supplemental Content

Support Center