Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 83

1.

Crystal structure of arginine-bound lysosomal transporter SLC38A9 in the cytosol-open state.

Lei HT, Ma J, Sanchez Martinez S, Gonen T.

Nat Struct Mol Biol. 2018 Jun;25(6):522-527. doi: 10.1038/s41594-018-0072-2. Epub 2018 Jun 5.

PMID:
29872228
2.

Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1.

Wang S, Tsun ZY, Wolfson RL, Shen K, Wyant GA, Plovanich ME, Yuan ED, Jones TD, Chantranupong L, Comb W, Wang T, Bar-Peled L, Zoncu R, Straub C, Kim C, Park J, Sabatini BL, Sabatini DM.

Science. 2015 Jan 9;347(6218):188-94. doi: 10.1126/science.1257132. Epub 2015 Jan 7.

3.

Transmembrane 4 L Six Family Member 5 Senses Arginine for mTORC1 Signaling.

Jung JW, Macalino SJY, Cui M, Kim JE, Kim HJ, Song DG, Nam SH, Kim S, Choi S, Lee JW.

Cell Metab. 2019 Apr 1. pii: S1550-4131(19)30133-0. doi: 10.1016/j.cmet.2019.03.005. [Epub ahead of print]

PMID:
30956113
4.

SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1.

Rebsamen M, Pochini L, Stasyk T, de Araújo ME, Galluccio M, Kandasamy RK, Snijder B, Fauster A, Rudashevskaya EL, Bruckner M, Scorzoni S, Filipek PA, Huber KV, Bigenzahn JW, Heinz LX, Kraft C, Bennett KL, Indiveri C, Huber LA, Superti-Furga G.

Nature. 2015 Mar 26;519(7544):477-81. doi: 10.1038/nature14107. Epub 2015 Jan 7.

5.

The amino acid transporter SLC38A9 regulates MTORC1 and autophagy.

Jin M, Klionsky DJ.

Autophagy. 2015;11(10):1709-10. doi: 10.1080/15548627.2015.1084461.

6.

PATs and SNATs: Amino Acid Sensors in Disguise.

Fan SJ, Goberdhan DCI.

Front Pharmacol. 2018 Jun 19;9:640. doi: 10.3389/fphar.2018.00640. eCollection 2018.

7.

PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer.

Fan SJ, Snell C, Turley H, Li JL, McCormick R, Perera SM, Heublein S, Kazi S, Azad A, Wilson C, Harris AL, Goberdhan DC.

Oncogene. 2016 Jun 9;35(23):3004-15. doi: 10.1038/onc.2015.363. Epub 2015 Oct 5.

8.

Crystal structures of arginine sensor CASTOR1 in arginine-bound and ligand free states.

Zhou Y, Wang C, Xiao Q, Guo L.

Biochem Biophys Res Commun. 2019 Jan 8;508(2):387-391. doi: 10.1016/j.bbrc.2018.11.147. Epub 2018 Nov 28.

PMID:
30503338
9.

Recent Advances in Understanding Amino Acid Sensing Mechanisms that Regulate mTORC1.

Zheng L, Zhang W, Zhou Y, Li F, Wei H, Peng J.

Int J Mol Sci. 2016 Sep 29;17(10). pii: E1636. Review.

10.

Essential amino acid ingestion alters expression of genes associated with amino acid sensing, transport, and mTORC1 regulation in human skeletal muscle.

Graber TG, Borack MS, Reidy PT, Volpi E, Rasmussen BB.

Nutr Metab (Lond). 2017 May 11;14:35. doi: 10.1186/s12986-017-0187-1. eCollection 2017. Erratum in: Nutr Metab (Lond). 2017 Jun 14;14 :39.

11.

Structural insight into the arginine-binding specificity of CASTOR1 in amino acid-dependent mTORC1 signaling.

Xia J, Wang R, Zhang T, Ding J.

Cell Discov. 2016 Sep 13;2:16035. doi: 10.1038/celldisc.2016.35. eCollection 2016.

12.

Arginine oscillation explains Na+ independence in the substrate/product antiporter CaiT.

Kalayil S, Schulze S, Kühlbrandt W.

Proc Natl Acad Sci U S A. 2013 Oct 22;110(43):17296-301. doi: 10.1073/pnas.1309071110. Epub 2013 Oct 7.

13.

The gene expression of the neuronal protein, SLC38A9, changes in mouse brain after in vivo starvation and high-fat diet.

Hellsten SV, Eriksson MM, Lekholm E, Arapi V, Perland E, Fredriksson R.

PLoS One. 2017 Feb 24;12(2):e0172917. doi: 10.1371/journal.pone.0172917. eCollection 2017.

14.

Control of TSC2-Rheb signaling axis by arginine regulates mTORC1 activity.

Carroll B, Maetzel D, Maddocks OD, Otten G, Ratcliff M, Smith GR, Dunlop EA, Passos JF, Davies OR, Jaenisch R, Tee AR, Sarkar S, Korolchuk VI.

Elife. 2016 Jan 7;5. pii: e11058. doi: 10.7554/eLife.11058.

15.

The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway.

Chantranupong L, Scaria SM, Saxton RA, Gygi MP, Shen K, Wyant GA, Wang T, Harper JW, Gygi SP, Sabatini DM.

Cell. 2016 Mar 24;165(1):153-164. doi: 10.1016/j.cell.2016.02.035. Epub 2016 Mar 10.

16.

Amino acid secondary transporters: toward a common transport mechanism.

Schweikhard ES, Ziegler CM.

Curr Top Membr. 2012;70:1-28. doi: 10.1016/B978-0-12-394316-3.00001-6. Review.

PMID:
23177982
17.

Amino acid sensing and activation of mechanistic target of rapamycin complex 1: implications for skeletal muscle.

Ham DJ, Lynch GS, Koopman R.

Curr Opin Clin Nutr Metab Care. 2016 Jan;19(1):67-73. doi: 10.1097/MCO.0000000000000240. Review.

PMID:
26560525
18.

Yes-associated protein 1 and transcriptional coactivator with PDZ-binding motif activate the mammalian target of rapamycin complex 1 pathway by regulating amino acid transporters in hepatocellular carcinoma.

Park YY, Sohn BH, Johnson RL, Kang MH, Kim SB, Shim JJ, Mangala LS, Kim JH, Yoo JE, Rodriguez-Aguayo C, Pradeep S, Hwang JE, Jang HJ, Lee HS, Rupaimoole R, Lopez-Berestein G, Jeong W, Park IS, Park YN, Sood AK, Mills GB, Lee JS.

Hepatology. 2016 Jan;63(1):159-72. doi: 10.1002/hep.28223. Epub 2015 Nov 26.

19.

Modeling and dynamics of the inward-facing state of a Na+/Cl- dependent neurotransmitter transporter homologue.

Shaikh SA, Tajkhorshid E.

PLoS Comput Biol. 2010 Aug 26;6(8). pii: e1000905. doi: 10.1371/journal.pcbi.1000905.

20.

Nutritional Stress Induced by Amino Acid Starvation Results in Changes for Slc38 Transporters in Immortalized Hypothalamic Neuronal Cells and Primary Cortex Cells.

Hellsten SV, Tripathi R, Ceder MM, Fredriksson R.

Front Mol Biosci. 2018 May 8;5:45. doi: 10.3389/fmolb.2018.00045. eCollection 2018.

Supplemental Content

Support Center