Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 107

1.

Effects of drugs of abuse on channelrhodopsin-2 function.

Gioia DA, Xu M, Wayman WN, Woodward JJ.

Neuropharmacology. 2018 Jun;135:316-327. doi: 10.1016/j.neuropharm.2018.03.031. Epub 2018 Mar 23.

PMID:
29580953
2.

Effect of Redox-Modifying Agents on the Activity of Channelrhodopsin-2.

Wu BM, Leng TD, Inoue K, Li J, Xiong ZG.

CNS Neurosci Ther. 2017 Mar;23(3):216-221. doi: 10.1111/cns.12662. Epub 2016 Dec 4.

3.

Opsin spectral sensitivity determines the effectiveness of optogenetic termination of ventricular fibrillation in the human heart: a simulation study.

Karathanos TV, Bayer JD, Wang D, Boyle PM, Trayanova NA.

J Physiol. 2016 Dec 1;594(23):6879-6891. doi: 10.1113/JP271739. Epub 2016 Apr 24.

4.

Effects of the abused inhalant toluene on ethanol-sensitive potassium channels expressed in oocytes.

Del Re AM, Dopico AM, Woodward JJ.

Brain Res. 2006 May 4;1087(1):75-82. Epub 2006 Apr 13.

PMID:
16626657
5.

Voltage- and temperature-dependent gating of heterologously expressed channelrhodopsin-2.

Chater TE, Henley JM, Brown JT, Randall AD.

J Neurosci Methods. 2010 Oct 30;193(1):7-13. doi: 10.1016/j.jneumeth.2010.07.033. Epub 2010 Aug 4.

6.

Effects of drugs of abuse on putative rostromedial tegmental neurons, inhibitory afferents to midbrain dopamine cells.

Lecca S, Melis M, Luchicchi A, Ennas MG, Castelli MP, Muntoni AL, Pistis M.

Neuropsychopharmacology. 2011 Feb;36(3):589-602. doi: 10.1038/npp.2010.190. Epub 2010 Nov 3.

7.

Kinetic profiles of photocurrents in cells expressing two types of channelrhodopsin genes.

Watanabe Y, Sugano E, Tabata K, Ozaki T, Saito T, Tamai M, Tomita H.

Biochem Biophys Res Commun. 2018 Feb 12;496(3):814-819. doi: 10.1016/j.bbrc.2018.01.149.

PMID:
29395082
8.

In vivo optogenetic activation of Nav1.8+ cutaneous nociceptors and their responses to natural stimuli.

Uhelski ML, Bruce DJ, Séguéla P, Wilcox GL, Simone DA.

J Neurophysiol. 2017 Jun 1;117(6):2218-2223. doi: 10.1152/jn.00083.2017. Epub 2017 Mar 15.

9.
10.

Computational optogenetics: empirically-derived voltage- and light-sensitive channelrhodopsin-2 model.

Williams JC, Xu J, Lu Z, Klimas A, Chen X, Ambrosi CM, Cohen IS, Entcheva E.

PLoS Comput Biol. 2013;9(9):e1003220. doi: 10.1371/journal.pcbi.1003220. Epub 2013 Sep 12.

11.

Channelrhodopsin-2 is a leaky proton pump.

Feldbauer K, Zimmermann D, Pintschovius V, Spitz J, Bamann C, Bamberg E.

Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12317-22. doi: 10.1073/pnas.0905852106. Epub 2009 Jul 9.

12.

Development of a novel optogenetic indicator based on cellular deformations for mapping optogenetic activities.

Li G, Yang J, Wang Y, Wang W, Liu L.

Nanoscale. 2018 Dec 7;10(45):21046-21051. doi: 10.1039/c8nr05014g. Epub 2018 Oct 2.

PMID:
30276394
13.

Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.

Inaguma A, Tsukamoto H, Kato HE, Kimura T, Ishizuka T, Oishi S, Yawo H, Nureki O, Furutani Y.

J Biol Chem. 2015 May 1;290(18):11623-34. doi: 10.1074/jbc.M115.642256. Epub 2015 Mar 21.

14.

Alcohol-, nicotine-, and cocaine-evoked release of morphine from invertebrate ganglia: model system for screening drugs of abuse.

Zhu W, Mantione KJ, Casares FM, Cadet P, Kim JW, Bilfinger TV, Kream RM, Khalill S, Singh S, Stefano GB.

Med Sci Monit. 2006 May;12(5):BR155-61.

PMID:
16641868
15.

Development of optically sensitive liver cells.

Vajanthri KY, Yadav P, Poddar S, Mahto SK.

Tissue Cell. 2018 Jun;52:129-134. doi: 10.1016/j.tice.2018.05.004. Epub 2018 May 8.

PMID:
29857822
16.

An Optogenetic Approach for Investigation of Excitatory and Inhibitory Network GABA Actions in Mice Expressing Channelrhodopsin-2 in GABAergic Neurons.

Valeeva G, Tressard T, Mukhtarov M, Baude A, Khazipov R.

J Neurosci. 2016 Jun 1;36(22):5961-73. doi: 10.1523/JNEUROSCI.3482-15.2016.

17.

Defining the ionic mechanisms of optogenetic control of vascular tone by channelrhodopsin-2.

Rorsman NJG, Ta CM, Garnett H, Swietach P, Tammaro P.

Br J Pharmacol. 2018 Jun;175(11):2028-2045. doi: 10.1111/bph.14183. Epub 2018 Apr 17.

18.

Structural foundations of optogenetics: Determinants of channelrhodopsin ion selectivity.

Berndt A, Lee SY, Wietek J, Ramakrishnan C, Steinberg EE, Rashid AJ, Kim H, Park S, Santoro A, Frankland PW, Iyer SM, Pak S, Ährlund-Richter S, Delp SL, Malenka RC, Josselyn SA, Carlén M, Hegemann P, Deisseroth K.

Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):822-9. doi: 10.1073/pnas.1523341113. Epub 2015 Dec 22.

19.

Temporal dynamics of neuronal activation by Channelrhodopsin-2 and TRPA1 determine behavioral output in Drosophila larvae.

Pulver SR, Pashkovski SL, Hornstein NJ, Garrity PA, Griffith LC.

J Neurophysiol. 2009 Jun;101(6):3075-88. doi: 10.1152/jn.00071.2009. Epub 2009 Apr 1.

20.

Interactions between nicotine and drugs of abuse: a review of preclinical findings.

Kohut SJ.

Am J Drug Alcohol Abuse. 2017 Mar;43(2):155-170. doi: 10.1080/00952990.2016.1209513. Epub 2016 Sep 2. Review.

Supplemental Content

Support Center