Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 147

1.

Comprehensive Dissection of Metabolic Changes in Albino and Green Tea Cultivars.

Li CF, Ma JQ, Huang DJ, Ma CL, Jin JQ, Yao MZ, Chen L.

J Agric Food Chem. 2018 Feb 28;66(8):2040-2048. doi: 10.1021/acs.jafc.7b05623. Epub 2018 Feb 19.

PMID:
29397711
2.

Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in 'Anji Baicha' (Camellia sinensis).

Li CF, Xu YX, Ma JQ, Jin JQ, Huang DJ, Yao MZ, Ma CL, Chen L.

BMC Plant Biol. 2016 Sep 8;16(1):195. doi: 10.1186/s12870-016-0885-2.

3.

Differential Metabolic Profiles during the Albescent Stages of 'Anji Baicha' (Camellia sinensis).

Li CF, Yao MZ, Ma CL, Ma JQ, Jin JQ, Chen L.

PLoS One. 2015 Oct 7;10(10):e0139996. doi: 10.1371/journal.pone.0139996. eCollection 2015.

4.

Determination of quality constituents in the young leaves of albino tea cultivars.

Feng L, Gao MJ, Hou RY, Hu XY, Zhang L, Wan XC, Wei S.

Food Chem. 2014 Jul 15;155:98-104. doi: 10.1016/j.foodchem.2014.01.044. Epub 2014 Jan 23.

PMID:
24594160
5.

Differential Accumulation of Aroma Compounds in Normal Green and Albino-Induced Yellow Tea (Camellia sinensis) Leaves.

Dong F, Zeng L, Yu Z, Li J, Tang J, Su X, Yang Z.

Molecules. 2018 Oct 18;23(10). pii: E2677. doi: 10.3390/molecules23102677.

6.

Quality evaluation of green tea leaf cultured under artificial light condition using gas chromatography/mass spectrometry.

Miyauchi S, Yonetani T, Yuki T, Tomio A, Bamba T, Fukusaki E.

J Biosci Bioeng. 2017 Feb;123(2):197-202. doi: 10.1016/j.jbiosc.2016.07.017. Epub 2016 Aug 24.

PMID:
27568369
7.

Metabolomic analysis reveals the composition differences in 13 Chinese tea cultivars of different manufacturing suitabilities.

Li P, Dai W, Lu M, Xie D, Tan J, Yang C, Zhu Y, Lv H, Peng Q, Zhang Y, Guo L, Ni D, Lin Z.

J Sci Food Agric. 2018 Feb;98(3):1153-1161. doi: 10.1002/jsfa.8566. Epub 2017 Aug 30.

PMID:
28734044
8.

Significantly increased amino acid accumulation in a novel albino branch of the tea plant (Camellia sinensis).

Lu M, Han J, Zhu B, Jia H, Yang T, Wang R, Deng WW, Zhang ZZ.

Planta. 2019 Feb;249(2):363-376. doi: 10.1007/s00425-018-3007-6. Epub 2018 Sep 12.

PMID:
30209617
9.

Biochemical and transcriptome analyses of a novel chlorophyll-deficient chlorina tea plant cultivar.

Wang L, Yue C, Cao H, Zhou Y, Zeng J, Yang Y, Wang X.

BMC Plant Biol. 2014 Dec 10;14:352. doi: 10.1186/s12870-014-0352-x.

10.

Quantitative Succinyl-Proteome Profiling of Camellia sinensis cv. 'Anji Baicha' During Periodic Albinism.

Xu YX, Shen CJ, Ma JQ, Chen W, Mao J, Zhou YY, Chen L.

Sci Rep. 2017 May 12;7(1):1873. doi: 10.1038/s41598-017-02128-x.

11.

Complementary transcriptomic and proteomic analyses of a chlorophyll-deficient tea plant cultivar reveal multiple metabolic pathway changes.

Wang L, Cao H, Chen C, Yue C, Hao X, Yang Y, Wang X.

J Proteomics. 2016 Jan 1;130:160-9. doi: 10.1016/j.jprot.2015.08.019. Epub 2015 Sep 3.

PMID:
26344129
12.

Differential accumulation of specialized metabolite l-theanine in green and albino-induced yellow tea (Camellia sinensis) leaves.

Cheng S, Fu X, Liao Y, Xu X, Zeng L, Tang J, Li J, Lai J, Yang Z.

Food Chem. 2019 Mar 15;276:93-100. doi: 10.1016/j.foodchem.2018.10.010. Epub 2018 Oct 3.

PMID:
30409668
13.

Metabolomics analysis reveals the metabolic and functional roles of flavonoids in light-sensitive tea leaves.

Zhang Q, Liu M, Ruan J.

BMC Plant Biol. 2017 Mar 20;17(1):64. doi: 10.1186/s12870-017-1012-8.

14.

Comparative Metabolic Responses and Adaptive Strategies of Tea Leaves ( Camellia sinensis) to N2 and CO2 Anaerobic Treatment by a Nontargeted Metabolomics Approach.

Chen Q, Zhang Y, Tao M, Li M, Wu Y, Qi Q, Yang H, Wan X.

J Agric Food Chem. 2018 Sep 12;66(36):9565-9572. doi: 10.1021/acs.jafc.8b03067. Epub 2018 Aug 31.

PMID:
30133278
15.

Variation of theanine, phenolic, and methylxanthine compounds in 21 cultivars of Camellia sinensis harvested in different seasons.

Fang R, Redfern SP, Kirkup D, Porter EA, Kite GC, Terry LA, Berry MJ, Simmonds MS.

Food Chem. 2017 Apr 1;220:517-526. doi: 10.1016/j.foodchem.2016.09.047. Epub 2016 Sep 9.

PMID:
27855934
16.

Metabolic phenotyping of various tea (Camellia sinensis L.) cultivars and understanding of their intrinsic metabolism.

Ji HG, Lee YR, Lee MS, Hwang KH, Kim EH, Park JS, Hong YS.

Food Chem. 2017 Oct 15;233:321-330. doi: 10.1016/j.foodchem.2017.04.079. Epub 2017 Apr 24.

PMID:
28530581
17.

Total polyphenols, catechin profiles and antioxidant activity of tea products from purple leaf coloured tea cultivars.

Kerio LC, Wachira FN, Wanyoko JK, Rotich MK.

Food Chem. 2013 Feb 15;136(3-4):1405-13. doi: 10.1016/j.foodchem.2012.09.066. Epub 2012 Sep 28.

PMID:
23194541
18.

Diverse Metabolite Variations in Tea (Camellia sinensis L.) Leaves Grown Under Various Shade Conditions Revisited: A Metabolomics Study.

Ji HG, Lee YR, Lee MS, Hwang KH, Park CY, Kim EH, Park JS, Hong YS.

J Agric Food Chem. 2018 Feb 28;66(8):1889-1897. doi: 10.1021/acs.jafc.7b04768. Epub 2018 Feb 20.

PMID:
29409322
19.

Characterization of the constituents and antioxidant activity of Brazilian green tea (Camellia sinensis var. assamica IAC-259 cultivar) extracts.

Saito ST, Gosmann G, Saffi J, Presser M, Richter MF, Bergold AM.

J Agric Food Chem. 2007 Nov 14;55(23):9409-14. Epub 2007 Oct 16.

PMID:
17937477
20.

Metabolic analyses reveal different mechanisms of leaf color change in two purple-leaf tea plant (Camellia sinensis L.) cultivars.

Shen J, Zou Z, Zhang X, Zhou L, Wang Y, Fang W, Zhu X.

Hortic Res. 2018 Feb 7;5:7. doi: 10.1038/s41438-017-0010-1. eCollection 2018.

Supplemental Content

Support Center