Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 102

1.

Three unrelated and unexpected amino acids determine the susceptibility of the interface cysteine to a sulfhydryl reagent in the triosephosphate isomerases of two trypanosomes.

Díaz-Mazariegos S, Cabrera N, Perez-Montfort R.

PLoS One. 2018 Jan 17;13(1):e0189525. doi: 10.1371/journal.pone.0189525. eCollection 2018.

2.

Identification of amino acids that account for long-range interactions in two triosephosphate isomerases from pathogenic trypanosomes.

García-Torres I, Cabrera N, Torres-Larios A, Rodríguez-Bolaños M, Díaz-Mazariegos S, Gómez-Puyou A, Perez-Montfort R.

PLoS One. 2011 Apr 18;6(4):e18791. doi: 10.1371/journal.pone.0018791.

3.

Sulfhydryl reagent susceptibility in proteins with high sequence similarity--triosephosphate isomerase from Trypanosoma brucei, Trypanosoma cruzi and Leishmania mexicana.

Garza-Ramos G, Cabrera N, Saavedra-Lira E, Tuena de Gómez-Puyou M, Ostoa-Saloma P, Pérez-Montfort R, Gómez-Puyou A.

Eur J Biochem. 1998 May 1;253(3):684-91.

4.
5.

Factors that control the reactivity of the interface cysteine of triosephosphate isomerase from Trypanosoma brucei and Trypanosoma cruzi.

Reyes-Vivas H, Hernández-Alcantara G, López-Velazquez G, Cabrera N, Pérez-Montfort R, de Gómez-Puyou MT, Gómez-Puyou A.

Biochemistry. 2001 Mar 13;40(10):3134-40.

PMID:
11258928
6.

Derivatization of the interface cysteine of triosephosphate isomerase from Trypanosoma brucei and Trypanosoma cruzi as probe of the interrelationship between the catalytic sites and the dimer interface.

Pérez-Montfort R, Garza-Ramos G, Alcántara GH, Reyes-Vivas H, Gao XG, Maldonado E, de Gómez-Puyou MT, Gómez-Puyou A.

Biochemistry. 1999 Mar 30;38(13):4114-20.

PMID:
10194326
7.

Species-specific inhibition of homologous enzymes by modification of nonconserved amino acids residues. The cysteine residues of triosephosphate isomerase.

Garza-Ramos G, Pérez-Montfort R, Rojo-Domínguez A, de Gómez-Puyou MT, Gómez-Puyou A.

Eur J Biochem. 1996 Oct 1;241(1):114-20.

8.

Cloning, expression, purification and characterization of triosephosphate isomerase from Trypanosoma cruzi.

Ostoa-Saloma P, Garza-Ramos G, Ramírez J, Becker I, Berzunza M, Landa A, Gómez-Puyou A, Tuena de Gómez-Puyou M, Pérez-Montfort R.

Eur J Biochem. 1997 Mar 15;244(3):700-5.

9.

Key residues of loop 3 in the interaction with the interface residue at position 14 in triosephosphate isomerase from Trypanosoma brucei.

Cabrera N, Hernández-Alcántara G, Mendoza-Hernández G, Gómez-Puyou A, Perez-Montfort R.

Biochemistry. 2008 Mar 18;47(11):3499-506. doi: 10.1021/bi702439r. Epub 2008 Feb 26.

PMID:
18298085
11.

Crosstalk between the subunits of the homodimeric enzyme triosephosphate isomerase.

Zomosa-Signoret V, Aguirre-López B, Hernández-Alcántara G, Pérez-Montfort R, de Gómez-Puyou MT, Gómez-Puyou A.

Proteins. 2007 Apr 1;67(1):75-83.

PMID:
17221869
12.

Different strategies to recover the activity of monomeric triosephosphate isomerase by directed evolution.

Saab-Rincón G, Juárez VR, Osuna J, Sánchez F, Soberón X.

Protein Eng. 2001 Mar;14(3):149-55.

PMID:
11342710
13.
14.

Differences in the intersubunit contacts in triosephosphate isomerase from two closely related pathogenic trypanosomes.

Maldonado E, Soriano-García M, Moreno A, Cabrera N, Garza-Ramos G, de Gómez-Puyou M, Gómez-Puyou A, Perez-Montfort R.

J Mol Biol. 1998;283(1):193-203.

PMID:
9761683
15.

Different contribution of conserved amino acids to the global properties of triosephosphate isomerases.

Aguirre Y, Cabrera N, Aguirre B, Pérez-Montfort R, Hernandez-Santoyo A, Reyes-Vivas H, Enríquez-Flores S, de Gómez-Puyou MT, Gómez-Puyou A, Sanchez-Ruiz JM, Costas M.

Proteins. 2014 Feb;82(2):323-35. doi: 10.1002/prot.24398. Epub 2013 Oct 18.

PMID:
23966267
16.

Design, creation, and characterization of a stable, monomeric triosephosphate isomerase.

Borchert TV, Abagyan R, Jaenicke R, Wierenga RK.

Proc Natl Acad Sci U S A. 1994 Feb 15;91(4):1515-8.

17.

Probing the role of highly conserved residues in triosephosphate isomerase--analysis of site specific mutants at positions 64 and 75 in the Plasmodial enzyme.

Bandyopadhyay D, Murthy MR, Balaram H, Balaram P.

FEBS J. 2015 Oct;282(20):3863-82. doi: 10.1111/febs.13384. Epub 2015 Aug 11.

18.

Structural effects of a dimer interface mutation on catalytic activity of triosephosphate isomerase. The role of conserved residues and complementary mutations.

Banerjee M, Balaram H, Balaram P.

FEBS J. 2009 Aug;276(15):4169-83. doi: 10.1111/j.1742-4658.2009.07126.x. Epub 2009 Jul 3.

19.

Effects of a buried cysteine-to-serine mutation on yeast triosephosphate isomerase structure and stability.

Hernández-Santoyo A, Domínguez-Ramírez L, Reyes-López CA, González-Mondragón E, Hernández-Arana A, Rodríguez-Romero A.

Int J Mol Sci. 2012;13(8):10010-21. doi: 10.3390/ijms130810010. Epub 2012 Aug 10.

20.

Supplemental Content

Support Center