Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Analysis of the joint effect of SNPs to identify independent loci and allelic heterogeneity in schizophrenia GWAS data.

Polushina T, Giddaluru S, Bettella F, Espeseth T, Lundervold AJ, Djurovic S, Cichon S, Hoffmann P, Nöthen MM, Steen VM, Andreassen OA, Le Hellard S.

Transl Psychiatry. 2017 Dec 18;7(12):1289. doi: 10.1038/s41398-017-0033-2.

2.

A Selection Operator for Summary Association Statistics Reveals Allelic Heterogeneity of Complex Traits.

Ning Z, Lee Y, Joshi PK, Wilson JF, Pawitan Y, Shen X.

Am J Hum Genet. 2017 Dec 7;101(6):903-912. doi: 10.1016/j.ajhg.2017.09.027.

3.

Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis.

Cross-Disorder Group of the Psychiatric Genomics Consortium.

Lancet. 2013 Apr 20;381(9875):1371-1379. doi: 10.1016/S0140-6736(12)62129-1. Epub 2013 Feb 28. Erratum in: Lancet. 2013 Apr 20;381(9875):1360. Erratum in: Lancet. 2013 Apr 20;381(9875):1360.

4.

Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia.

Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium.

Mol Autism. 2017 May 22;8:21. doi: 10.1186/s13229-017-0137-9. eCollection 2017.

5.

Identification of shared risk loci and pathways for bipolar disorder and schizophrenia.

Forstner AJ, Hecker J, Hofmann A, Maaser A, Reinbold CS, Mühleisen TW, Leber M, Strohmaier J, Degenhardt F, Treutlein J, Mattheisen M, Schumacher J, Streit F, Meier S, Herms S, Hoffmann P, Lacour A, Witt SH, Reif A, Müller-Myhsok B, Lucae S, Maier W, Schwarz M, Vedder H, Kammerer-Ciernioch J, Pfennig A, Bauer M, Hautzinger M, Moebus S, Schenk LM, Fischer SB, Sivalingam S, Czerski PM, Hauser J, Lissowska J, Szeszenia-Dabrowska N, Brennan P, McKay JD, Wright A, Mitchell PB, Fullerton JM, Schofield PR, Montgomery GW, Medland SE, Gordon SD, Martin NG, Krasnov V, Chuchalin A, Babadjanova G, Pantelejeva G, Abramova LI, Tiganov AS, Polonikov A, Khusnutdinova E, Alda M, Cruceanu C, Rouleau GA, Turecki G, Laprise C, Rivas F, Mayoral F, Kogevinas M, Grigoroiu-Serbanescu M, Becker T, Schulze TG, Rietschel M, Cichon S, Fier H, Nöthen MM.

PLoS One. 2017 Feb 6;12(2):e0171595. doi: 10.1371/journal.pone.0171595. eCollection 2017.

6.

Replication and cross-phenotype study based upon schizophrenia GWASs data in the Japanese population: support for association of MHC region with psychosis.

Saito T, Kondo K, Iwayama Y, Shimasaki A, Aleksic B, Yamada K, Toyota T, Hattori E, Esaki K, Ujike H, Inada T, Kunugi H, Kato T, Yoshikawa T, Ozaki N, Ikeda M, Iwata N.

Am J Med Genet B Neuropsychiatr Genet. 2014 Jul;165B(5):421-7. doi: 10.1002/ajmg.b.32246. Epub 2014 May 29.

PMID:
24888570
7.

Meta-analysis of data from the Psychiatric Genomics Consortium and additional samples supports association of CACNA1C with risk for schizophrenia.

Takahashi S, Glatt SJ, Uchiyama M, Faraone SV, Tsuang MT.

Schizophr Res. 2015 Oct;168(1-2):429-33. doi: 10.1016/j.schres.2015.07.033. Epub 2015 Aug 12.

PMID:
26276307
8.

Common variants on Xq28 conferring risk of schizophrenia in Han Chinese.

Wong EH, So HC, Li M, Wang Q, Butler AW, Paul B, Wu HM, Hui TC, Choi SC, So MT, Garcia-Barcelo MM, McAlonan GM, Chen EY, Cheung EF, Chan RC, Purcell SM, Cherny SS, Chen RR, Li T, Sham PC.

Schizophr Bull. 2014 Jul;40(4):777-86. doi: 10.1093/schbul/sbt104. Epub 2013 Sep 16.

9.

A multi-SNP locus-association method reveals a substantial fraction of the missing heritability.

Ehret GB, Lamparter D, Hoggart CJ; Genetic Investigation of Anthropometric Traits Consortium, Whittaker JC, Beckmann JS, Kutalik Z.

Am J Hum Genet. 2012 Nov 2;91(5):863-71. doi: 10.1016/j.ajhg.2012.09.013.

10.

Gene-based analyses reveal novel genetic overlap and allelic heterogeneity across five major psychiatric disorders.

Zhao H, Nyholt DR.

Hum Genet. 2017 Feb;136(2):263-274. doi: 10.1007/s00439-016-1755-6. Epub 2016 Dec 29.

PMID:
28035465
11.

Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT).

Lencz T, Knowles E, Davies G, Guha S, Liewald DC, Starr JM, Djurovic S, Melle I, Sundet K, Christoforou A, Reinvang I, Mukherjee S, DeRosse P, Lundervold A, Steen VM, John M, Espeseth T, Räikkönen K, Widen E, Palotie A, Eriksson JG, Giegling I, Konte B, Ikeda M, Roussos P, Giakoumaki S, Burdick KE, Payton A, Ollier W, Horan M, Donohoe G, Morris D, Corvin A, Gill M, Pendleton N, Iwata N, Darvasi A, Bitsios P, Rujescu D, Lahti J, Hellard SL, Keller MC, Andreassen OA, Deary IJ, Glahn DC, Malhotra AK.

Mol Psychiatry. 2014 Feb;19(2):168-74. doi: 10.1038/mp.2013.166. Epub 2013 Dec 17.

12.

GCTA: a tool for genome-wide complex trait analysis.

Yang J, Lee SH, Goddard ME, Visscher PM.

Am J Hum Genet. 2011 Jan 7;88(1):76-82. doi: 10.1016/j.ajhg.2010.11.011. Epub 2010 Dec 17.

13.

Replication of previous genome-wide association studies of psychiatric diseases in a large schizophrenia case-control sample from Spain.

Ivorra JL, Rivero O, Costas J, Iniesta R, Arrojo M, Ramos-Ríos R, Carracedo A, Palomo T, Rodriguez-Jimenez R, Cervilla J, Gutiérrez B, Molina E, Arango C, Alvarez M, Pascual JC, Pérez V, Saiz PA, García-Portilla MP, Bobes J, González-Pinto A, Zorrilla I, Haro JM, Bernardo M, Baca-García E, González JC, Hoenicka J, Moltó MD, Sanjuán J.

Schizophr Res. 2014 Oct;159(1):107-13. doi: 10.1016/j.schres.2014.07.004. Epub 2014 Aug 12.

PMID:
25124521
14.

Expression QTL analysis of top loci from GWAS meta-analysis highlights additional schizophrenia candidate genes.

de Jong S, van Eijk KR, Zeegers DW, Strengman E, Janson E, Veldink JH, van den Berg LH, Cahn W, Kahn RS, Boks MP, Ophoff RA; PGC Schizophrenia (GWAS) Consortium.

Eur J Hum Genet. 2012 Sep;20(9):1004-8. doi: 10.1038/ejhg.2012.38. Epub 2012 Mar 21.

15.

Genome-wide significant associations in schizophrenia to ITIH3/4, CACNA1C and SDCCAG8, and extensive replication of associations reported by the Schizophrenia PGC.

Hamshere ML, Walters JT, Smith R, Richards AL, Green E, Grozeva D, Jones I, Forty L, Jones L, Gordon-Smith K, Riley B, O'Neill FA, Kendler KS, Sklar P, Purcell S, Kranz J; Schizophrenia Psychiatric Genome-wide Association Study Consortium; Wellcome Trust Case Control Consortium+; Wellcome Trust Case Control Consortium 2, Morris D, Gill M, Holmans P, Craddock N, Corvin A, Owen MJ, O'Donovan MC.

Mol Psychiatry. 2013 Jun;18(6):708-12. doi: 10.1038/mp.2012.67. Epub 2012 May 22. Erratum in: Mol Psychiatry. 2013 Jun;18(6):738. O'Neill, T [corrected to O'Neill, F A].

16.

Genetic variants on 3q21 and in the Sp8 transcription factor gene (SP8) as susceptibility loci for psychotic disorders: a genetic association study.

Kondo K, Ikeda M, Kajio Y, Saito T, Iwayama Y, Aleksic B, Yamada K, Toyota T, Hattori E, Ujike H, Inada T, Kunugi H, Kato T, Yoshikawa T, Ozaki N, Iwata N.

PLoS One. 2013 Aug 13;8(8):e70964. doi: 10.1371/journal.pone.0070964. eCollection 2013.

17.

Allelic heterogeneity and more detailed analyses of known loci explain additional phenotypic variation and reveal complex patterns of association.

Wood AR, Hernandez DG, Nalls MA, Yaghootkar H, Gibbs JR, Harries LW, Chong S, Moore M, Weedon MN, Guralnik JM, Bandinelli S, Murray A, Ferrucci L, Singleton AB, Melzer D, Frayling TM.

Hum Mol Genet. 2011 Oct 15;20(20):4082-92. doi: 10.1093/hmg/ddr328. Epub 2011 Jul 28.

18.

Significance Testing for Allelic Heterogeneity.

Deng Y, Pan W.

Genetics. 2018 Sep;210(1):25-32. doi: 10.1534/genetics.118.301111. Epub 2018 Jun 29.

PMID:
29959179
19.

A genome-wide association analysis of a broad psychosis phenotype identifies three loci for further investigation.

Psychosis Endophenotypes International Consortium; Wellcome Trust Case-Control Consortium 2, Bramon E, Pirinen M, Strange A, Lin K, Freeman C, Bellenguez C, Su Z, Band G, Pearson R, Vukcevic D, Langford C, Deloukas P, Hunt S, Gray E, Dronov S, Potter SC, Tashakkori-Ghanbaria A, Edkins S, Bumpstead SJ, Arranz MJ, Bakker S, Bender S, Bruggeman R, Cahn W, Chandler D, Collier DA, Crespo-Facorro B, Dazzan P, de Haan L, Di Forti M, Dragović M, Giegling I, Hall J, Iyegbe C, Jablensky A, Kahn RS, Kalaydjieva L, Kravariti E, Lawrie S, Linszen DH, Mata I, McDonald C, McIntosh A, Myin-Germeys I, Ophoff RA, Pariante CM, Paunio T, Picchioni M; Psychiatric Genomics Consortium, Ripke S, Rujescu D, Sauer H, Shaikh M, Sussmann J, Suvisaari J, Tosato S, Toulopoulou T, Van Os J, Walshe M, Weisbrod M, Whalley H, Wiersma D, Blackwell JM, Brown MA, Casas JP, Corvin A, Duncanson A, Jankowski JA, Markus HS, Mathew CG, Palmer CN, Plomin R, Rautanen A, Sawcer SJ, Trembath RC, Wood NW, Barroso I, Peltonen L, Lewis CM, Murray RM, Donnelly P, Powell J, Spencer CC.

Biol Psychiatry. 2014 Mar 1;75(5):386-97. doi: 10.1016/j.biopsych.2013.03.033. Epub 2013 Jul 17.

20.

Genomic predictors of combat stress vulnerability and resilience in U.S. Marines: A genome-wide association study across multiple ancestries implicates PRTFDC1 as a potential PTSD gene.

Nievergelt CM, Maihofer AX, Mustapic M, Yurgil KA, Schork NJ, Miller MW, Logue MW, Geyer MA, Risbrough VB, O'Connor DT, Baker DG.

Psychoneuroendocrinology. 2015 Jan;51:459-71. doi: 10.1016/j.psyneuen.2014.10.017. Epub 2014 Oct 30.

PMID:
25456346

Supplemental Content

Support Center