Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 106

1.

Genome Assembly and Annotation of the Medicinal Plant Calotropis gigantea, a Producer of Anticancer and Antimalarial Cardenolides.

Hoopes GM, Hamilton JP, Kim J, Zhao D, Wiegert-Rininger K, Crisovan E, Buell CR.

G3 (Bethesda). 2018 Feb 2;8(2):385-391. doi: 10.1534/g3.117.300331.

2.

Cardenolides from Calotropis gigantea as potent inhibitors of hypoxia-inducible factor-1 transcriptional activity.

Parhira S, Zhu GY, Chen M, Bai LP, Jiang ZH.

J Ethnopharmacol. 2016 Dec 24;194:930-936. doi: 10.1016/j.jep.2016.10.070. Epub 2016 Oct 26.

PMID:
27793783
3.

Improved cardenolide production in Calotropis gigantea hairy roots using mechanical wounding and elicitation.

Sun J, Xiao J, Wang X, Yuan X, Zhao B.

Biotechnol Lett. 2012 Mar;34(3):563-9. doi: 10.1007/s10529-011-0804-4. Epub 2011 Nov 23.

PMID:
22109935
4.

De novo sequencing and assembly analysis of transcriptome in the Sodom apple (Calotropis gigantea).

Muriira NG, Xu W, Muchugi A, Xu J, Liu A.

BMC Genomics. 2015 Sep 22;16:723. doi: 10.1186/s12864-015-1908-3.

5.

Cytotoxic cardenolides from the root bark of Calotropis gigantea.

You H, Lei M, Song W, Chen H, Meng Y, Guo D, Liu X, Hu L.

Steroids. 2013 Oct;78(10):1029-34. doi: 10.1016/j.steroids.2013.06.002. Epub 2013 Jul 12.

PMID:
23851141
6.

De novo genome assembly of Camptotheca acuminata, a natural source of the anti-cancer compound camptothecin.

Zhao D, Hamilton JP, Pham GM, Crisovan E, Wiegert-Rininger K, Vaillancourt B, DellaPenna D, Buell CR.

Gigascience. 2017 Sep 1;6(9):1-7. doi: 10.1093/gigascience/gix065.

7.

Apocynaceae species with antiproliferative and/or antiplasmodial properties: a review of ten genera.

Chan EW, Wong SK, Chan HT.

J Integr Med. 2016 Jul;14(4):269-84. doi: 10.1016/S2095-4964(16)60261-3. Review.

PMID:
27417173
8.

Cardenolides from the bark of Calotropis gigantea.

Van Khang P, Zhang ZG, Meng YH, Guo DA, Liu X, Hu LH, Ma L.

Nat Prod Res. 2014;28(15):1191-6. doi: 10.1080/14786419.2014.909419. Epub 2014 Apr 16.

PMID:
24735475
9.

19-Nor- and 18,20-epoxy-cardenolides from the leaves of Calotropis gigantea.

Lhinhatrakool T, Sutthivaiyakit S.

J Nat Prod. 2006 Aug;69(8):1249-51.

PMID:
16933890
10.

Calotropin: a cardenolide from calotropis gigantea that inhibits Wnt signaling by increasing casein kinase 1α in colon cancer cells.

Park HY, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M.

Chembiochem. 2014 Apr 14;15(6):872-8. doi: 10.1002/cbic.201300786. Epub 2014 Mar 18.

PMID:
24644251
11.

Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera.

Pandey A, Swarnkar V, Pandey T, Srivastava P, Kanojiya S, Mishra DK, Tripathi V.

Sci Rep. 2016 Oct 5;6:34464. doi: 10.1038/srep34464.

12.

High-throughput sequencing and de novo transcriptome assembly of Swertia japonica to identify genes involved in the biosynthesis of therapeutic metabolites.

Rai A, Nakamura M, Takahashi H, Suzuki H, Saito K, Yamazaki M.

Plant Cell Rep. 2016 Oct;35(10):2091-111. doi: 10.1007/s00299-016-2021-z. Epub 2016 Jul 4.

PMID:
27378356
13.

Assessment of antiproliferative and antiplasmodial activities of five selected Apocynaceae species.

Wong SK, Lim YY, Abdullah NR, Nordin FJ.

BMC Complement Altern Med. 2011 Jan 14;11:3. doi: 10.1186/1472-6882-11-3.

14.

Cytotoxic cardenolide and sterols from Calotropis gigantea.

Jacinto SD, Chun EA, Montuno AS, Shen CC, Espineli DL, Ragasa CY.

Nat Prod Commun. 2011 Jun;6(6):803-6.

PMID:
21815415
15.

RNA-Seq analysis and annotation of a draft blueberry genome assembly identifies candidate genes involved in fruit ripening, biosynthesis of bioactive compounds, and stage-specific alternative splicing.

Gupta V, Estrada AD, Blakley I, Reid R, Patel K, Meyer MD, Andersen SU, Brown AF, Lila MA, Loraine AE.

Gigascience. 2015 Feb 13;4:5. doi: 10.1186/s13742-015-0046-9. eCollection 2015.

16.

Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes.

Garg A, Agrawal L, Misra RC, Sharma S, Ghosh S.

BMC Genomics. 2015 Sep 2;16:659. doi: 10.1186/s12864-015-1864-y.

17.

De Novo Assembly and Characterization of the Transcriptome of the Chinese Medicinal Herb, Gentiana rigescens.

Zhang X, Allan AC, Li C, Wang Y, Yao Q.

Int J Mol Sci. 2015 May 20;16(5):11550-73. doi: 10.3390/ijms160511550.

18.

Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions.

Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S.

New Phytol. 2012 Apr;194(1):28-45. doi: 10.1111/j.1469-8137.2011.04049.x. Epub 2012 Jan 31. Review.

19.

Detection of a Usp-like gene in Calotropis procera plant from the de novo assembled genome contigs of the high-throughput sequencing dataset.

Shokry AM, Al-Karim S, Ramadan A, Gadallah N, Al Attas SG, Sabir JS, Hassan SM, Madkour MA, Bressan R, Mahfouz M, Bahieldin A.

C R Biol. 2014 Feb;337(2):86-94. doi: 10.1016/j.crvi.2013.12.008. Epub 2014 Feb 8.

PMID:
24581802
20.

Na+/K+-ATPase resistance and cardenolide sequestration: basal adaptations to host plant toxins in the milkweed bugs (Hemiptera: Lygaeidae: Lygaeinae).

Bramer C, Dobler S, Deckert J, Stemmer M, Petschenka G.

Proc Biol Sci. 2015 Apr 22;282(1805). pii: 20142346. doi: 10.1098/rspb.2014.2346.

Supplemental Content

Support Center