Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 93

1.
2.

Genome-wide transcription start site profiling in biofilm-grown Burkholderia cenocepacia J2315.

Sass AM, Van Acker H, Förstner KU, Van Nieuwerburgh F, Deforce D, Vogel J, Coenye T.

BMC Genomics. 2015 Oct 13;16:775. doi: 10.1186/s12864-015-1993-3.

3.

The Small RNA ncS35 Regulates Growth in Burkholderia cenocepacia J2315.

Kiekens S, Sass A, Van Nieuwerburgh F, Deforce D, Coenye T.

mSphere. 2018 Jan 10;3(1). pii: e00579-17. doi: 10.1128/mSphere.00579-17. eCollection 2018 Jan-Feb.

4.

Experimental identification of small non-coding regulatory RNAs in the opportunistic human pathogen Burkholderia cenocepacia J2315.

Ramos CG, Grilo AM, da Costa PJ, Leitão JH.

Genomics. 2013 Feb;101(2):139-48. doi: 10.1016/j.ygeno.2012.10.006. Epub 2012 Nov 8.

5.

Transcriptional response of Burkholderia cenocepacia J2315 sessile cells to treatments with high doses of hydrogen peroxide and sodium hypochlorite.

Peeters E, Sass A, Mahenthiralingam E, Nelis H, Coenye T.

BMC Genomics. 2010 Feb 5;11:90. doi: 10.1186/1471-2164-11-90.

6.

Gene expression changes linked to antimicrobial resistance, oxidative stress, iron depletion and retained motility are observed when Burkholderia cenocepacia grows in cystic fibrosis sputum.

Drevinek P, Holden MT, Ge Z, Jones AM, Ketchell I, Gill RT, Mahenthiralingam E.

BMC Infect Dis. 2008 Sep 19;8:121. doi: 10.1186/1471-2334-8-121.

7.

Identification of putative noncoding RNA genes in the Burkholderia cenocepacia J2315 genome.

Coenye T, Drevinek P, Mahenthiralingam E, Shah SA, Gill RT, Vandamme P, Ussery DW.

FEMS Microbiol Lett. 2007 Nov;276(1):83-92.

8.

Identification of novel small RNAs in Burkholderia cenocepacia KC-01 expressed under iron limitation and oxidative stress conditions.

Ghosh S, Dureja C, Khatri I, Subramanian S, Raychaudhuri S, Ghosh S.

Microbiology. 2017 Nov 3. doi: 10.1099/mic.0.000566. [Epub ahead of print]

PMID:
29099689
9.

MtvR is a global small noncoding regulatory RNA in Burkholderia cenocepacia.

Ramos CG, Grilo AM, da Costa PJ, Feliciano JR, Leitão JH.

J Bacteriol. 2013 Aug;195(16):3514-23. doi: 10.1128/JB.00242-13. Epub 2013 May 31. Retraction in: Ramos CG, Grilo AM, da Costa PJ, Feliciano JR, Leitão JH. J Bacteriol. 2014 Nov;196(22):3981.

10.

A Genome-Wide Prediction and Identification of Intergenic Small RNAs by Comparative Analysis in Mesorhizobium huakuii 7653R.

Fuli X, Wenlong Z, Xiao W, Jing Z, Baohai H, Zhengzheng Z, Bin-Guang M, Youguo L.

Front Microbiol. 2017 Sep 8;8:1730. doi: 10.3389/fmicb.2017.01730. eCollection 2017.

11.

Involvement of toxin-antitoxin modules in Burkholderia cenocepacia biofilm persistence.

Van Acker H, Sass A, Dhondt I, Nelis HJ, Coenye T.

Pathog Dis. 2014 Aug;71(3):326-35. doi: 10.1111/2049-632X.12177. Epub 2014 Apr 28.

PMID:
24719230
12.

Candidate Essential Genes in Burkholderia cenocepacia J2315 Identified by Genome-Wide TraDIS.

Wong YC, Abd El Ghany M, Naeem R, Lee KW, Tan YC, Pain A, Nathan S.

Front Microbiol. 2016 Aug 22;7:1288. doi: 10.3389/fmicb.2016.01288. eCollection 2016.

13.

Differential roles of RND efflux pumps in antimicrobial drug resistance of sessile and planktonic Burkholderia cenocepacia cells.

Buroni S, Matthijs N, Spadaro F, Van Acker H, Scoffone VC, Pasca MR, Riccardi G, Coenye T.

Antimicrob Agents Chemother. 2014 Dec;58(12):7424-9. doi: 10.1128/AAC.03800-14. Epub 2014 Sep 29.

14.

Spontaneous and evolutionary changes in the antibiotic resistance of Burkholderia cenocepacia observed by global gene expression analysis.

Sass A, Marchbank A, Tullis E, Lipuma JJ, Mahenthiralingam E.

BMC Genomics. 2011 Jul 22;12:373. doi: 10.1186/1471-2164-12-373.

15.

The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia.

Fazli M, O'Connell A, Nilsson M, Niehaus K, Dow JM, Givskov M, Ryan RP, Tolker-Nielsen T.

Mol Microbiol. 2011 Oct;82(2):327-41. doi: 10.1111/j.1365-2958.2011.07814.x. Epub 2011 Sep 7.

16.

Global assessment of small RNAs reveals a non-coding transcript involved in biofilm formation and attachment in Acinetobacter baumannii ATCC 17978.

Álvarez-Fraga L, Rumbo-Feal S, Pérez A, Gómez MJ, Gayoso C, Vallejo JA, Ohneck EJ, Valle J, Actis LA, Beceiro A, Bou G, Poza M.

PLoS One. 2017 Aug 1;12(8):e0182084. doi: 10.1371/journal.pone.0182084. eCollection 2017.

17.

Burkholderia cenocepacia J2315 acyl carrier protein: a potential target for antimicrobials' development?

Sousa SA, Ramos CG, Almeida F, Meirinhos-Soares L, Wopperer J, Schwager S, Eberl L, Leitão JH.

Microb Pathog. 2008 Nov-Dec;45(5-6):331-6. doi: 10.1016/j.micpath.2008.08.002. Epub 2008 Aug 15.

PMID:
18771721
18.

Genome-wide analysis of DNA repeats in Burkholderia cenocepacia J2315 identifies a novel adhesin-like gene unique to epidemic-associated strains of the ET-12 lineage.

Mil-Homens D, Rocha EP, Fialho AM.

Microbiology. 2010 Apr;156(Pt 4):1084-96. doi: 10.1099/mic.0.032623-0. Epub 2009 Dec 17.

PMID:
20019083
19.

Molecular mechanisms of chlorhexidine tolerance in Burkholderia cenocepacia biofilms.

Coenye T, Van Acker H, Peeters E, Sass A, Buroni S, Riccardi G, Mahenthiralingam E.

Antimicrob Agents Chemother. 2011 May;55(5):1912-9. doi: 10.1128/AAC.01571-10. Epub 2011 Feb 28.

20.

Exploring the metabolic network of the epidemic pathogen Burkholderia cenocepacia J2315 via genome-scale reconstruction.

Fang K, Zhao H, Sun C, Lam CM, Chang S, Zhang K, Panda G, Godinho M, Martins dos Santos VA, Wang J.

BMC Syst Biol. 2011 May 25;5:83. doi: 10.1186/1752-0509-5-83.

Supplemental Content

Support Center