Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 98


The effect of artificial selection on phenotypic plasticity in maize.

Gage JL, Jarquin D, Romay C, Lorenz A, Buckler ES, Kaeppler S, Alkhalifah N, Bohn M, Campbell DA, Edwards J, Ertl D, Flint-Garcia S, Gardiner J, Good B, Hirsch CN, Holland J, Hooker DC, Knoll J, Kolkman J, Kruger G, Lauter N, Lawrence-Dill CJ, Lee E, Lynch J, Murray SC, Nelson R, Petzoldt J, Rocheford T, Schnable J, Schnable PS, Scully B, Smith M, Springer NM, Srinivasan S, Walton R, Weldekidan T, Wisser RJ, Xu W, Yu J, de Leon N.

Nat Commun. 2017 Nov 7;8(1):1348. doi: 10.1038/s41467-017-01450-2.


Genome-wide genetic changes during modern breeding of maize.

Jiao Y, Zhao H, Ren L, Song W, Zeng B, Guo J, Wang B, Liu Z, Chen J, Li W, Zhang M, Xie S, Lai J.

Nat Genet. 2012 Jun 3;44(7):812-5. doi: 10.1038/ng.2312. Erratum in: Nat Genet. 2014 Sep;46(9):1039-40.


A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement.

Yamasaki M, Tenaillon MI, Bi IV, Schroeder SG, Sanchez-Villeda H, Doebley JF, Gaut BS, McMullen MD.

Plant Cell. 2005 Nov;17(11):2859-72. Epub 2005 Oct 14.


Genomic screening for artificial selection during domestication and improvement in maize.

Yamasaki M, Wright SI, McMullen MD.

Ann Bot. 2007 Nov;100(5):967-73. Epub 2007 Aug 18. Review.


Genomic, Transcriptomic, and Phenomic Variation Reveals the Complex Adaptation of Modern Maize Breeding.

Liu H, Wang X, Warburton ML, Wen W, Jin M, Deng M, Liu J, Tong H, Pan Q, Yang X, Yan J.

Mol Plant. 2015 Jun;8(6):871-84. doi: 10.1016/j.molp.2015.01.016. Epub 2015 Jan 22.


Genomic models with genotype × environment interaction for predicting hybrid performance: an application in maize hybrids.

Acosta-Pech R, Crossa J, de Los Campos G, Teyssèdre S, Claustres B, Pérez-Elizalde S, Pérez-Rodríguez P.

Theor Appl Genet. 2017 Jul;130(7):1431-1440. doi: 10.1007/s00122-017-2898-0. Epub 2017 Apr 11.


Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus.

Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S.

PLoS One. 2013 Aug 30;8(8):e71377. doi: 10.1371/journal.pone.0071377. eCollection 2013.


A Gene-Oriented Haplotype Comparison Reveals Recently Selected Genomic Regions in Temperate and Tropical Maize Germplasm.

He C, Fu J, Zhang J, Li Y, Zheng J, Zhang H, Yang X, Wang J, Wang G.

PLoS One. 2017 Jan 18;12(1):e0169806. doi: 10.1371/journal.pone.0169806. eCollection 2017.


The effects of artificial selection on the maize genome.

Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS.

Science. 2005 May 27;308(5726):1310-4. Erratum in: Science. 2005 Oct 7;310(5745):54.


Hallauer's Tusón: a decade of selection for tropical-to-temperate phenological adaptation in maize.

Teixeira JE, Weldekidan T, de Leon N, Flint-Garcia S, Holland JB, Lauter N, Murray SC, Xu W, Hessel DA, Kleintop AE, Hawk JA, Hallauer A, Wisser RJ.

Heredity (Edinb). 2015 Feb;114(2):229-40. doi: 10.1038/hdy.2014.90. Epub 2014 Nov 5.


Selection for silage yield and composition did not affect genomic diversity within the Wisconsin Quality Synthetic maize population.

Lorenz AJ, Beissinger TM, Silva RR, de Leon N.

G3 (Bethesda). 2015 Feb 2;5(4):541-9. doi: 10.1534/g3.114.015263.


Rapid Cycling Genomic Selection in a Multiparental Tropical Maize Population.

Zhang X, Pérez-Rodríguez P, Burgueño J, Olsen M, Buckler E, Atlin G, Prasanna BM, Vargas M, San Vicente F, Crossa J.

G3 (Bethesda). 2017 Jul 5;7(7):2315-2326. doi: 10.1534/g3.117.043141.


Genome-wide recombination dynamics are associated with phenotypic variation in maize.

Pan Q, Li L, Yang X, Tong H, Xu S, Li Z, Li W, Muehlbauer GJ, Li J, Yan J.

New Phytol. 2016 May;210(3):1083-94. doi: 10.1111/nph.13810. Epub 2015 Dec 31.


Importance of adaptation and genotype × environment interactions in tropical beef breeding systems.

Burrow HM.

Animal. 2012 May;6(5):729-40. doi: 10.1017/S175173111200002X. Review.


Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.

Cuevas J, Crossa J, Montesinos-López OA, Burgueño J, Pérez-Rodríguez P, de Los Campos G.

G3 (Bethesda). 2017 Jan 5;7(1):41-53. doi: 10.1534/g3.116.035584.


Characterizing the population structure and genetic diversity of maize breeding germplasm in Southwest China using genome-wide SNP markers.

Zhang X, Zhang H, Li L, Lan H, Ren Z, Liu D, Wu L, Liu H, Jaqueth J, Li B, Pan G, Gao S.

BMC Genomics. 2016 Aug 31;17:697. doi: 10.1186/s12864-016-3041-3.


Genetic diversity and selection in the maize starch pathway.

Whitt SR, Wilson LM, Tenaillon MI, Gaut BS, Buckler ES 4th.

Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12959-62. Epub 2002 Sep 20.


Association mapping across numerous traits reveals patterns of functional variation in maize.

Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES.

PLoS Genet. 2014 Dec 4;10(12):e1004845. doi: 10.1371/journal.pgen.1004845. eCollection 2014 Dec.


Genetic Architecture of Domestication-Related Traits in Maize.

Xue S, Bradbury PJ, Casstevens T, Holland JB.

Genetics. 2016 Sep;204(1):99-113. doi: 10.1534/genetics.116.191106. Epub 2016 Jul 13.


Comparative SNP and haplotype analysis reveals a higher genetic diversity and rapider LD decay in tropical than temperate germplasm in maize.

Lu Y, Shah T, Hao Z, Taba S, Zhang S, Gao S, Liu J, Cao M, Wang J, Prakash AB, Rong T, Xu Y.

PLoS One. 2011;6(9):e24861. doi: 10.1371/journal.pone.0024861. Epub 2011 Sep 15.

Supplemental Content

Support Center