Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

The genetic architecture of photosynthesis and plant growth-related traits in tomato.

de Oliveira Silva FM, Lichtenstein G, Alseekh S, Rosado-Souza L, Conte M, Suguiyama VF, Lira BS, Fanourakis D, Usadel B, Bhering LL, DaMatta FM, Sulpice R, Araújo WL, Rossi M, de Setta N, Fernie AR, Carrari F, Nunes-Nesi A.

Plant Cell Environ. 2018 Feb;41(2):327-341. doi: 10.1111/pce.13084. Epub 2017 Nov 29.

PMID:
29044606
2.

Exploiting Natural Variation to Discover Candidate Genes Involved in Photosynthesis-Related Traits.

de Oliveira Silva FM, de Ávila Silva L, Araújo WL, Zsögön A, Nunes-Nesi A.

Methods Mol Biol. 2017;1653:125-135. doi: 10.1007/978-1-4939-7225-8_9.

PMID:
28822130
3.

Solanum pennellii backcross inbred lines (BILs) link small genomic bins with tomato traits.

Ofner I, Lashbrooke J, Pleban T, Aharoni A, Zamir D.

Plant J. 2016 Jul;87(2):151-60. doi: 10.1111/tpj.13194. Epub 2016 Jul 18.

4.

eQTL Regulating Transcript Levels Associated with Diverse Biological Processes in Tomato.

Ranjan A, Budke JM, Rowland SD, Chitwood DH, Kumar R, Carriedo L, Ichihashi Y, Zumstein K, Maloof JN, Sinha NR.

Plant Physiol. 2016 Sep;172(1):328-40. doi: 10.1104/pp.16.00289. Epub 2016 Jul 14.

5.

Identification of enzyme activity quantitative trait loci in a Solanum lycopersicum x Solanum pennellii introgression line population.

Steinhauser MC, Steinhauser D, Gibon Y, Bolger M, Arrivault S, Usadel B, Zamir D, Fernie AR, Stitt M.

Plant Physiol. 2011 Nov;157(3):998-1014. doi: 10.1104/pp.111.181594. Epub 2011 Sep 2.

6.

Uncovering tomato quantitative trait loci and candidate genes for fruit cuticular lipid composition using the Solanum pennellii introgression line population.

Fernandez-Moreno JP, Levy-Samoha D, Malitsky S, Monforte AJ, Orzaez D, Aharoni A, Granell A.

J Exp Bot. 2017 May 17;68(11):2703-2716. doi: 10.1093/jxb/erx134.

7.

A quantitative genetic basis for leaf morphology in a set of precisely defined tomato introgression lines.

Chitwood DH, Kumar R, Headland LR, Ranjan A, Covington MF, Ichihashi Y, Fulop D, Jiménez-Gómez JM, Peng J, Maloof JN, Sinha NR.

Plant Cell. 2013 Jul;25(7):2465-81. doi: 10.1105/tpc.113.112391. Epub 2013 Jul 19.

8.

Canalization of Tomato Fruit Metabolism.

Alseekh S, Tong H, Scossa F, Brotman Y, Vigroux F, Tohge T, Ofner I, Zamir D, Nikoloski Z, Fernie AR.

Plant Cell. 2017 Nov;29(11):2753-2765. doi: 10.1105/tpc.17.00367. Epub 2017 Nov 1.

9.

A candidate gene survey of quantitative trait loci affecting chemical composition in tomato fruit.

Bermúdez L, Urias U, Milstein D, Kamenetzky L, Asis R, Fernie AR, Van Sluys MA, Carrari F, Rossi M.

J Exp Bot. 2008;59(10):2875-90. doi: 10.1093/jxb/ern146. Epub 2008 Jun 13.

10.

Genomic analysis of wild tomato introgressions determining metabolism- and yield-associated traits.

Kamenetzky L, Asís R, Bassi S, de Godoy F, Bermúdez L, Fernie AR, Van Sluys MA, Vrebalov J, Giovannoni JJ, Rossi M, Carrari F.

Plant Physiol. 2010 Apr;152(4):1772-86. doi: 10.1104/pp.109.150532. Epub 2010 Jan 29.

11.

Identification of genomic loci associated with 21chlorophyll fluorescence phenotypes by genome-wide association analysis in soybean.

Herritt M, Dhanapal AP, Purcell LC, Fritschi FB.

BMC Plant Biol. 2018 Nov 29;18(1):312. doi: 10.1186/s12870-018-1517-9.

12.

A genetic map of candidate genes and QTLs involved in tomato fruit size and composition.

Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C.

J Exp Bot. 2004 Aug;55(403):1671-85. Epub 2004 Jul 16.

PMID:
15258170
13.

A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification.

Fulop D, Ranjan A, Ofner I, Covington MF, Chitwood DH, West D, Ichihashi Y, Headland L, Zamir D, Maloof JN, Sinha NR.

G3 (Bethesda). 2016 Oct 13;6(10):3169-3184. doi: 10.1534/g3.116.030536.

14.

Genetic dissection of vitamin E biosynthesis in tomato.

Almeida J, Quadrana L, Asís R, Setta N, de Godoy F, Bermúdez L, Otaiza SN, Corrêa da Silva JV, Fernie AR, Carrari F, Rossi M.

J Exp Bot. 2011 Jul;62(11):3781-98. doi: 10.1093/jxb/err055. Epub 2011 Apr 28.

15.

Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato.

de Godoy F, Bermúdez L, Lira BS, de Souza AP, Elbl P, Demarco D, Alseekh S, Insani M, Buckeridge M, Almeida J, Grigioni G, Fernie AR, Carrari F, Rossi M.

J Exp Bot. 2013 May;64(8):2449-66. doi: 10.1093/jxb/ert106. Epub 2013 Apr 18.

16.

Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection.

Prudent M, Causse M, Génard M, Tripodi P, Grandillo S, Bertin N.

J Exp Bot. 2009;60(3):923-37. doi: 10.1093/jxb/ern338. Epub 2009 Jan 29.

17.

Association mapping reveals the genetic architecture of tomato response to water deficit: focus on major fruit quality traits.

Albert E, Segura V, Gricourt J, Bonnefoi J, Derivot L, Causse M.

J Exp Bot. 2016 Dec;67(22):6413-6430.

18.
20.

Transcriptional profiles of drought-responsive genes in modulating transcription signal transduction, and biochemical pathways in tomato.

Gong P, Zhang J, Li H, Yang C, Zhang C, Zhang X, Khurram Z, Zhang Y, Wang T, Fei Z, Ye Z.

J Exp Bot. 2010 Aug;61(13):3563-75. doi: 10.1093/jxb/erq167. Epub 2010 Jul 19.

Supplemental Content

Support Center