Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 149

1.

Breeding for cuticle-associated traits in crop species: traits, targets, and strategies.

Petit J, Bres C, Mauxion JP, Bakan B, Rothan C.

J Exp Bot. 2017 Nov 9;68(19):5369-5387. doi: 10.1093/jxb/erx341. Review.

PMID:
29036305
2.

Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit load×QTL interactions.

Kromdijk J, Bertin N, Heuvelink E, Molenaar J, de Visser PH, Marcelis LF, Struik PC.

J Exp Bot. 2014 Jan;65(1):11-22. doi: 10.1093/jxb/ert365. Epub 2013 Nov 13. Review.

PMID:
24227339
3.

There's more than one way to skin a fruit: formation and functions of fruit cuticles.

Martin LB, Rose JK.

J Exp Bot. 2014 Aug;65(16):4639-51. doi: 10.1093/jxb/eru301. Epub 2014 Jul 15. Review.

PMID:
25028557
4.

Exploiting induced and natural epigenetic variation for crop improvement.

Springer NM, Schmitz RJ.

Nat Rev Genet. 2017 Sep;18(9):563-575. doi: 10.1038/nrg.2017.45. Epub 2017 Jul 3. Review.

PMID:
28669983
5.

Translational Research: Exploring and Creating Genetic Diversity.

Jacob P, Avni A, Bendahmane A.

Trends Plant Sci. 2018 Jan;23(1):42-52. doi: 10.1016/j.tplants.2017.10.002. Epub 2017 Nov 7. Review.

PMID:
29126790
6.

Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin-abundant mutants and a new hypomorphic allele of GDSL lipase.

Petit J, Bres C, Just D, Garcia V, Mauxion JP, Marion D, Bakan B, Joubès J, Domergue F, Rothan C.

Plant Physiol. 2014 Feb;164(2):888-906. doi: 10.1104/pp.113.232645. Epub 2013 Dec 19.

7.

Genomics-based strategies for the use of natural variation in the improvement of crop metabolism.

Scossa F, Brotman Y, de Abreu E Lima F, Willmitzer L, Nikoloski Z, Tohge T, Fernie AR.

Plant Sci. 2016 Jan;242:47-64. doi: 10.1016/j.plantsci.2015.05.021. Epub 2015 Jun 5. Review.

PMID:
26566824
8.

Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape.

Gascuel Q, Diretto G, Monforte AJ, Fortes AM, Granell A.

Front Plant Sci. 2017 May 12;8:652. doi: 10.3389/fpls.2017.00652. eCollection 2017. Review.

9.

Current issues in cereal crop biodiversity.

Moreta DE, Mathur PN, van Zonneveld M, Amaya K, Arango J, Selvaraj MG, Dedicova B.

Adv Biochem Eng Biotechnol. 2015;147:1-35. doi: 10.1007/10_2013_263.

PMID:
24352706
10.

Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement.

Nuccio ML, Paul M, Bate NJ, Cohn J, Cutler SR.

Plant Sci. 2018 Aug;273:110-119. doi: 10.1016/j.plantsci.2018.01.020. Epub 2018 Feb 5. Review.

PMID:
29907303
11.

Breeding technologies to increase crop production in a changing world.

Tester M, Langridge P.

Science. 2010 Feb 12;327(5967):818-22. doi: 10.1126/science.1183700. Review.

PMID:
20150489
12.

Diversity in Plant Breeding: A New Conceptual Framework.

Litrico I, Violle C.

Trends Plant Sci. 2015 Oct;20(10):604-613. doi: 10.1016/j.tplants.2015.07.007. Review.

13.

Breeding for plant heat tolerance at vegetative and reproductive stages.

Driedonks N, Rieu I, Vriezen WH.

Plant Reprod. 2016 Jun;29(1-2):67-79. doi: 10.1007/s00497-016-0275-9. Epub 2016 Feb 13. Review.

14.

Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives.

Warschefsky E, Penmetsa RV, Cook DR, von Wettberg EJ.

Am J Bot. 2014 Oct;101(10):1791-800. doi: 10.3732/ajb.1400116. Epub 2014 Oct 8. Review.

15.

Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.

Kujur A, Saxena MS, Bajaj D, Laxmi, Parida SK.

J Biosci. 2013 Dec;38(5):971-87. Review.

16.

Molecular mechanisms involved in convergent crop domestication.

Lenser T, Theißen G.

Trends Plant Sci. 2013 Dec;18(12):704-14. doi: 10.1016/j.tplants.2013.08.007. Epub 2013 Sep 12. Review.

PMID:
24035234
17.

Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing.

Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB.

Cell. 2017 Oct 5;171(2):470-480.e8. doi: 10.1016/j.cell.2017.08.030. Epub 2017 Sep 14.

18.

Understanding crop genetic diversity under modern plant breeding.

Fu YB.

Theor Appl Genet. 2015 Nov;128(11):2131-42. doi: 10.1007/s00122-015-2585-y. Epub 2015 Aug 6. Review.

19.

Global agricultural intensification during climate change: a role for genomics.

Abberton M, Batley J, Bentley A, Bryant J, Cai H, Cockram J, de Oliveira AC, Cseke LJ, Dempewolf H, De Pace C, Edwards D, Gepts P, Greenland A, Hall AE, Henry R, Hori K, Howe GT, Hughes S, Humphreys M, Lightfoot D, Marshall A, Mayes S, Nguyen HT, Ogbonnaya FC, Ortiz R, Paterson AH, Tuberosa R, Valliyodan B, Varshney RK, Yano M.

Plant Biotechnol J. 2016 Apr;14(4):1095-8. doi: 10.1111/pbi.12467. Epub 2015 Sep 11. Review.

20.

Genome engineering and plant breeding: impact on trait discovery and development.

Nogué F, Mara K, Collonnier C, Casacuberta JM.

Plant Cell Rep. 2016 Jul;35(7):1475-86. doi: 10.1007/s00299-016-1993-z. Epub 2016 May 18. Review.

Supplemental Content

Support Center