Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 92

1.

Remarkable Stability of Myelinating Oligodendrocytes in Mice.

Tripathi RB, Jackiewicz M, McKenzie IA, Kougioumtzidou E, Grist M, Richardson WD.

Cell Rep. 2017 Oct 10;21(2):316-323. doi: 10.1016/j.celrep.2017.09.050.

2.

Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling.

Young KM, Psachoulia K, Tripathi RB, Dunn SJ, Cossell L, Attwell D, Tohyama K, Richardson WD.

Neuron. 2013 Mar 6;77(5):873-85. doi: 10.1016/j.neuron.2013.01.006.

3.

Age-related and cuprizone-induced changes in myelin and transcription factor gene expression and in oligodendrocyte cell densities in the rostral corpus callosum of mice.

Doucette JR, Jiao R, Nazarali AJ.

Cell Mol Neurobiol. 2010 May;30(4):607-29. doi: 10.1007/s10571-009-9486-z. Epub 2010 Jan 9.

PMID:
20063055
4.

Properties and fate of oligodendrocyte progenitor cells in the corpus callosum, motor cortex, and piriform cortex of the mouse.

Clarke LE, Young KM, Hamilton NB, Li H, Richardson WD, Attwell D.

J Neurosci. 2012 Jun 13;32(24):8173-85. doi: 10.1523/JNEUROSCI.0928-12.2012.

5.

Dominant-negative beta1 integrin mice have region-specific myelin defects accompanied by alterations in MAPK activity.

Lee KK, de Repentigny Y, Saulnier R, Rippstein P, Macklin WB, Kothary R.

Glia. 2006 Jun;53(8):836-44.

PMID:
16575886
6.

The adhesion G protein-coupled receptor GPR56 is a cell-autonomous regulator of oligodendrocyte development.

Giera S, Deng Y, Luo R, Ackerman SD, Mogha A, Monk KR, Ying Y, Jeong SJ, Makinodan M, Bialas AR, Chang BS, Stevens B, Corfas G, Piao X.

Nat Commun. 2015 Jan 21;6:6121. doi: 10.1038/ncomms7121.

7.

Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain.

Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M.

Science. 2014 May 2;344(6183):1252304. doi: 10.1126/science.1252304. Epub 2014 Apr 10.

8.

Nbn gene inactivation in the CNS of mouse inhibits the myelinating ability of the mature cortical oligodendrocytes.

Liu B, Chen X, Wang ZQ, Tong WM.

Glia. 2014 Jan;62(1):133-44. doi: 10.1002/glia.22593.

PMID:
24272708
9.

ERK1/2 Activation in Preexisting Oligodendrocytes of Adult Mice Drives New Myelin Synthesis and Enhanced CNS Function.

Jeffries MA, Urbanek K, Torres L, Wendell SG, Rubio ME, Fyffe-Maricich SL.

J Neurosci. 2016 Aug 31;36(35):9186-200. doi: 10.1523/JNEUROSCI.1444-16.2016.

10.

Decrease in newly generated oligodendrocytes leads to motor dysfunctions and changed myelin structures that can be rescued by transplanted cells.

Schneider S, Gruart A, Grade S, Zhang Y, Kröger S, Kirchhoff F, Eichele G, Delgado García JM, Dimou L.

Glia. 2016 Dec;64(12):2201-2218. doi: 10.1002/glia.23055. Epub 2016 Sep 12.

PMID:
27615452
11.

Cyclin dependent kinase 5 is required for the normal development of oligodendrocytes and myelin formation.

Yang Y, Wang H, Zhang J, Luo F, Herrup K, Bibb JA, Lu R, Miller RH.

Dev Biol. 2013 Jun 15;378(2):94-106. doi: 10.1016/j.ydbio.2013.03.023. Epub 2013 Apr 10.

12.

Motor skill learning requires active central myelination.

McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B, Tohyama K, Richardson WD.

Science. 2014 Oct 17;346(6207):318-22. doi: 10.1126/science.1254960.

13.

Prolonged Sox4 expression in oligodendrocytes interferes with normal myelination in the central nervous system.

Potzner MR, Griffel C, Lütjen-Drecoll E, Bösl MR, Wegner M, Sock E.

Mol Cell Biol. 2007 Aug;27(15):5316-26. Epub 2007 May 21.

14.

Adult CST-null mice maintain an increased number of oligodendrocytes.

Shroff SM, Pomicter AD, Chow WN, Fox MA, Colello RJ, Henderson SC, Dupree JL.

J Neurosci Res. 2009 Nov 15;87(15):3403-14. doi: 10.1002/jnr.22003.

15.

Mammalian-Specific Central Myelin Protein Opalin Is Redundant for Normal Myelination: Structural and Behavioral Assessments.

Yoshikawa F, Sato Y, Tohyama K, Akagi T, Furuse T, Sadakata T, Tanaka M, Shinoda Y, Hashikawa T, Itohara S, Sano Y, Ghandour MS, Wakana S, Furuichi T.

PLoS One. 2016 Nov 17;11(11):e0166732. doi: 10.1371/journal.pone.0166732. eCollection 2016.

16.

Direct evidence that ventral forebrain cells migrate to the cortex and contribute to the generation of cortical myelinating oligodendrocytes.

Nakahira E, Kagawa T, Shimizu T, Goulding MD, Ikenaka K.

Dev Biol. 2006 Mar 1;291(1):123-31. Epub 2006 Jan 18.

17.

Dicer1 and miR-219 Are required for normal oligodendrocyte differentiation and myelination.

Dugas JC, Cuellar TL, Scholze A, Ason B, Ibrahim A, Emery B, Zamanian JL, Foo LC, McManus MT, Barres BA.

Neuron. 2010 Mar 11;65(5):597-611. doi: 10.1016/j.neuron.2010.01.027.

18.

The genetic signature of perineuronal oligodendrocytes reveals their unique phenotype.

Szuchet S, Nielsen JA, Lovas G, Domowicz MS, de Velasco JM, Maric D, Hudson LD.

Eur J Neurosci. 2011 Dec;34(12):1906-22. doi: 10.1111/j.1460-9568.2011.07922.x. Epub 2011 Dec 2.

19.

Proliferation and death of oligodendrocytes and myelin proteins are differentially regulated in male and female rodents.

Cerghet M, Skoff RP, Bessert D, Zhang Z, Mullins C, Ghandour MS.

J Neurosci. 2006 Feb 1;26(5):1439-47.

20.

Selective expression of LDLR and VLDLR in myelinating oligodendrocytes.

Zhao S, Hu X, Park J, Zhu Y, Zhu Q, Li H, Luo C, Han R, Cooper N, Qiu M.

Dev Dyn. 2007 Sep;236(9):2708-12.

Supplemental Content

Support Center