Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 156

1.

Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula.

Moll KM, Zhou P, Ramaraj T, Fajardo D, Devitt NP, Sadowsky MJ, Stupar RM, Tiffin P, Miller JR, Young ND, Silverstein KAT, Mudge J.

BMC Genomics. 2017 Aug 4;18(1):578. doi: 10.1186/s12864-017-3971-4.

2.

Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data.

Jiao WB, Accinelli GG, Hartwig B, Kiefer C, Baker D, Severing E, Willing EM, Piednoel M, Woetzel S, Madrid-Herrero E, Huettel B, Hümann U, Reinhard R, Koch MA, Swan D, Clavijo B, Coupland G, Schneeberger K.

Genome Res. 2017 May;27(5):778-786. doi: 10.1101/gr.213652.116. Epub 2017 Feb 3.

3.

Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108.

Wang TZ, Tian QY, Wang BL, Zhao MG, Zhang WH.

BMC Plant Biol. 2014 May 6;14:122. doi: 10.1186/1471-2229-14-122.

4.

Satellite repeats in the functional centromere and pericentromeric heterochromatin of Medicago truncatula.

Kulikova O, Geurts R, Lamine M, Kim DJ, Cook DR, Leunissen J, de Jong H, Roe BA, Bisseling T.

Chromosoma. 2004 Dec;113(6):276-83. Epub 2004 Oct 6.

PMID:
15480726
5.

Genomic characterization of the LEED..PEEDs, a gene family unique to the medicago lineage.

Trujillo DI, Silverstein KA, Young ND.

G3 (Bethesda). 2014 Aug 25;4(10):2003-12. doi: 10.1534/g3.114.011874.

6.

Genome Sequencing and Assembly by Long Reads in Plants.

Li C, Lin F, An D, Wang W, Huang R.

Genes (Basel). 2017 Dec 28;9(1). pii: E6. doi: 10.3390/genes9010006. Review.

7.

Exploring structural variation and gene family architecture with De Novo assemblies of 15 Medicago genomes.

Zhou P, Silverstein KA, Ramaraj T, Guhlin J, Denny R, Liu J, Farmer AD, Steele KP, Stupar RM, Miller JR, Tiffin P, Mudge J, Young ND.

BMC Genomics. 2017 Mar 27;18(1):261. doi: 10.1186/s12864-017-3654-1.

8.

A critical comparison of technologies for a plant genome sequencing project.

Paajanen P, Kettleborough G, López-Girona E, Giolai M, Heavens D, Baker D, Lister A, Cugliandolo F, Wilde G, Hein I, Macaulay I, Bryan GJ, Clark MD.

Gigascience. 2019 Mar 1;8(3). pii: giy163. doi: 10.1093/gigascience/giy163.

9.

An improved genome release (version Mt4.0) for the model legume Medicago truncatula.

Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs KL, Yandell M, Gundlach H, Mayer KF, Schwartz DC, Town CD.

BMC Genomics. 2014 Apr 27;15:312. doi: 10.1186/1471-2164-15-312.

10.

Hybrid assembly with long and short reads improves discovery of gene family expansions.

Miller JR, Zhou P, Mudge J, Gurtowski J, Lee H, Ramaraj T, Walenz BP, Liu J, Stupar RM, Denny R, Song L, Singh N, Maron LG, McCouch SR, McCombie WR, Schatz MC, Tiffin P, Young ND, Silverstein KAT.

BMC Genomics. 2017 Jul 19;18(1):541. doi: 10.1186/s12864-017-3927-8.

11.

BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes.

Staňková H, Hastie AR, Chan S, Vrána J, Tulpová Z, Kubaláková M, Visendi P, Hayashi S, Luo M, Batley J, Edwards D, Doležel J, Šimková H.

Plant Biotechnol J. 2016 Jul;14(7):1523-31. doi: 10.1111/pbi.12513. Epub 2016 Jan 23.

12.

Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris.

Ellwood SR, Phan HT, Jordan M, Hane J, Torres AM, Avila CM, Cruz-Izquierdo S, Oliver RP.

BMC Genomics. 2008 Aug 9;9:380. doi: 10.1186/1471-2164-9-380.

13.

Annotating the genome of Medicago truncatula.

Town CD.

Curr Opin Plant Biol. 2006 Apr;9(2):122-7. Epub 2006 Feb 2. Review.

PMID:
16458040
14.

Population genomic analysis of Tunisian Medicago truncatula reveals candidates for local adaptation.

Friesen ML, Cordeiro MA, Penmetsa RV, Badri M, Huguet T, Aouani ME, Cook DR, Nuzhdin SV.

Plant J. 2010 Aug;63(4):623-35. doi: 10.1111/j.1365-313X.2010.04267.x.

15.

Medicago truncatula ecotypes A17 and R108 differed in their response to iron deficiency.

Li G, Wang B, Tian Q, Wang T, Zhang WH.

J Plant Physiol. 2014 May 1;171(8):639-47. doi: 10.1016/j.jplph.2013.12.018. Epub 2014 Mar 21.

PMID:
24709157
16.

The Medicago truncatula reference accession A17 has an aberrant chromosomal configuration.

Kamphuis LG, Williams AH, D'Souza NK, Pfaff T, Ellwood SR, Groves EJ, Singh KB, Oliver RP, Lichtenzveig J.

New Phytol. 2007;174(2):299-303.

17.

A chromosomal genomics approach to assess and validate the desi and kabuli draft chickpea genome assemblies.

Ruperao P, Chan CK, Azam S, Karafiátová M, Hayashi S, Cížková J, Saxena RK, Simková H, Song C, Vrána J, Chitikineni A, Visendi P, Gaur PM, Millán T, Singh KB, Taran B, Wang J, Batley J, Doležel J, Varshney RK, Edwards D.

Plant Biotechnol J. 2014 Aug;12(6):778-86. doi: 10.1111/pbi.12182. Epub 2014 Apr 5.

18.

Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields Completely Finished Fungal Genome.

Faino L, Seidl MF, Datema E, van den Berg GC, Janssen A, Wittenberg AH, Thomma BP.

MBio. 2015 Aug 18;6(4). pii: e00936-15. doi: 10.1128/mBio.00936-15.

19.

The Medicago truncatula Genome: Genomic Data Availability.

Burks D, Azad R, Wen J, Dickstein R.

Methods Mol Biol. 2018;1822:39-59. doi: 10.1007/978-1-4939-8633-0_3.

PMID:
30043295
20.

Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes.

Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Schiex T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KF, Rogers J, Quétier F, Oldroyd GE, Debellé F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y, Young ND.

Proc Natl Acad Sci U S A. 2006 Oct 3;103(40):14959-64. Epub 2006 Sep 26. Erratum in: Proc Natl Acad Sci U S A. 2006 Nov 21;103(47):18026. Scheix, Thomas [corrected to Schiex, Thomas].

Supplemental Content

Support Center