Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 90

1.

On the performance of natural orbital functional approximations in the Hubbard model.

Mitxelena I, Piris M, Rodríguez-Mayorga M.

J Phys Condens Matter. 2017 Oct 25;29(42):425602. doi: 10.1088/1361-648X/aa80ca. Epub 2017 Jul 19.

PMID:
28722686
2.

Natural orbital functional for spin-polarized periodic systems.

Quintero-Monsebaiz R, Mitxelena I, Rodríguez-Mayorga M, Vela A, Piris M.

J Phys Condens Matter. 2019 Apr 24;31(16):165501. doi: 10.1088/1361-648X/ab0170. Epub 2019 Jan 23.

PMID:
30673638
3.

Corrigendum: ``On the performance of natural orbital functional approximations in the Hubbard model'' [J. Phys.: Condens. Matter 29 (2017) 425602].

Mitxelena I, Piris M, Rodríguez Mayorga MA.

J Phys Condens Matter. 2018 Jan 9. doi: 10.1088/1361-648X/aaa659. [Epub ahead of print]

PMID:
29313829
4.

Electron correlation effects in third-order densities.

Rodriguez-Mayorga M, Ramos-Cordoba E, Feixas F, Matito E.

Phys Chem Chem Phys. 2017 Feb 8;19(6):4522-4529. doi: 10.1039/c6cp07616e.

PMID:
28121319
5.

Variational calculation of second-order reduced density matrices by strong N-representability conditions and an accurate semidefinite programming solver.

Nakata M, Braams BJ, Fujisawa K, Fukuda M, Percus JK, Yamashita M, Zhao Z.

J Chem Phys. 2008 Apr 28;128(16):164113. doi: 10.1063/1.2911696.

PMID:
18447427
6.

N-density representability and the optimal transport limit of the Hohenberg-Kohn functional.

Friesecke G, Mendl CB, Pass B, Cotar C, Klüppelberg C.

J Chem Phys. 2013 Oct 28;139(16):164109. doi: 10.1063/1.4821351.

PMID:
24182006
7.

Active-space N-representability constraints for variational two-particle reduced density matrix calculations.

Shenvi N, Izmaylov AF.

Phys Rev Lett. 2010 Nov 19;105(21):213003. Epub 2010 Nov 18.

PMID:
21231299
8.

H4: A challenging system for natural orbital functional approximations.

Ramos-Cordoba E, Lopez X, Piris M, Matito E.

J Chem Phys. 2015 Oct 28;143(16):164112. doi: 10.1063/1.4934799.

PMID:
26520503
9.

Reduced density-matrix functional theory: Correlation and spectroscopy.

Di Sabatino S, Berger JA, Reining L, Romaniello P.

J Chem Phys. 2015 Jul 14;143(2):024108. doi: 10.1063/1.4926327.

PMID:
26178091
10.

Interacting pairs in natural orbital functional theory.

Piris M.

J Chem Phys. 2014 Jul 28;141(4):044107. doi: 10.1063/1.4890653.

PMID:
25084881
11.

Time-dependent density-functional theory and strongly correlated systems: insight from numerical studies.

Verdozzi C.

Phys Rev Lett. 2008 Oct 17;101(16):166401. Epub 2008 Oct 13.

PMID:
18999689
12.

Communication: The role of the positivity N-representability conditions in natural orbital functional theory.

Piris M, Matxain JM, Lopez X, Ugalde JM.

J Chem Phys. 2010 Sep 21;133(11):111101. doi: 10.1063/1.3481578.

PMID:
20866116
13.

An effective quantum parameter for strongly correlated metallic ferromagnets.

Kamble B, Singh A.

J Phys Condens Matter. 2012 Feb 29;24(8):086004. doi: 10.1088/0953-8984/24/8/086004. Epub 2012 Jan 26.

PMID:
22277778
14.

Separation of dynamic and nondynamic correlation.

Ramos-Cordoba E, Salvador P, Matito E.

Phys Chem Chem Phys. 2016 Aug 24;18(34):24015-23. doi: 10.1039/c6cp03072f.

PMID:
27523386
15.

The Hubbard dimer: a density functional case study of a many-body problem.

Carrascal DJ, Ferrer J, Smith JC, Burke K.

J Phys Condens Matter. 2015 Oct 7;27(39):393001. doi: 10.1088/0953-8984/27/39/393001. Epub 2015 Sep 18.

PMID:
26380948
16.

Quantum simulation of the Hubbard model with dopant atoms in silicon.

Salfi J, Mol JA, Rahman R, Klimeck G, Simmons MY, Hollenberg LC, Rogge S.

Nat Commun. 2016 Apr 20;7:11342. doi: 10.1038/ncomms11342.

17.

Dynamical correlations in multiorbital Hubbard models: fluctuation exchange approximations.

Drchal V, Janiš V, Kudrnovský J, Oudovenko VS, Dai X, Haule K, Kotliar G.

J Phys Condens Matter. 2005 Jan 12;17(1):61-74. doi: 10.1088/0953-8984/17/1/007. Epub 2004 Dec 10.

PMID:
21690669
18.

Restricted second random phase approximations and Tamm-Dancoff approximations for electronic excitation energy calculations.

Peng D, Yang Y, Zhang P, Yang W.

J Chem Phys. 2014 Dec 7;141(21):214102. doi: 10.1063/1.4901716.

PMID:
25481124
19.

Orbital nematic instability in the two-orbital Hubbard model: renormalization-group + constrained RPA analysis.

Tsuchiizu M, Ohno Y, Onari S, Kontani H.

Phys Rev Lett. 2013 Aug 2;111(5):057003. Epub 2013 Jul 30.

PMID:
23952433
20.

Lattice-gas model driven by Hubbard electrons.

Reinaldo-Falagán M, Tarazona P, Chacón E, Hernandez JP.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Sep;60(3):2626-35.

PMID:
11970064

Supplemental Content

Support Center