Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 112

1.

CRISPR/Cas9 gene drives in genetically variable and nonrandomly mating wild populations.

Drury DW, Dapper AL, Siniard DJ, Zentner GE, Wade MJ.

Sci Adv. 2017 May 19;3(5):e1601910. doi: 10.1126/sciadv.1601910. eCollection 2017 May.

2.

Expanding the genetic toolkit of Tribolium castaneum.

Rylee JC, Siniard DJ, Doucette K, Zentner GE, Zelhof AC.

PLoS One. 2018 Apr 12;13(4):e0195977. doi: 10.1371/journal.pone.0195977. eCollection 2018.

3.

Cheating evolution: engineering gene drives to manipulate the fate of wild populations.

Champer J, Buchman A, Akbari OS.

Nat Rev Genet. 2016 Mar;17(3):146-59. doi: 10.1038/nrg.2015.34. Epub 2016 Feb 15. Review.

PMID:
26875679
4.

Gene drive systems: do they have a place in agricultural weed management?

Neve P.

Pest Manag Sci. 2018 Dec;74(12):2671-2679. doi: 10.1002/ps.5137. Epub 2018 Sep 17. Review.

5.

Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle Tribolium castaneum.

Gilles AF, Schinko JB, Averof M.

Development. 2015 Aug 15;142(16):2832-9. doi: 10.1242/dev.125054. Epub 2015 Jul 9.

6.

Tuning CRISPR-Cas9 Gene Drives in Saccharomyces cerevisiae.

Roggenkamp E, Giersch RM, Schrock MN, Turnquist E, Halloran M, Finnigan GC.

G3 (Bethesda). 2018 Mar 2;8(3):999-1018. doi: 10.1534/g3.117.300557. Erratum in: G3 (Bethesda). 2018 Oct 3;8(10):3383.

7.

The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation.

Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK.

Plant Biotechnol J. 2014 Aug;12(6):797-807. doi: 10.1111/pbi.12200. Epub 2014 May 23.

8.

Evolutionary dynamics of CRISPR gene drives.

Noble C, Olejarz J, Esvelt KM, Church GM, Nowak MA.

Sci Adv. 2017 Apr 5;3(4):e1601964. doi: 10.1126/sciadv.1601964. eCollection 2017 Apr.

9.

CRISPR/Cas9: a promising way to exploit genetic variation in plants.

Rani R, Yadav P, Barbadikar KM, Baliyan N, Malhotra EV, Singh BK, Kumar A, Singh D.

Biotechnol Lett. 2016 Dec;38(12):1991-2006. Epub 2016 Aug 29. Review.

PMID:
27571968
10.

Novel CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and drive efficiency in genetically diverse populations.

Champer J, Reeves R, Oh SY, Liu C, Liu J, Clark AG, Messer PW.

PLoS Genet. 2017 Jul 20;13(7):e1006796. doi: 10.1371/journal.pgen.1006796. eCollection 2017 Jul.

11.

Evolution of Resistance Against CRISPR/Cas9 Gene Drive.

Unckless RL, Clark AG, Messer PW.

Genetics. 2017 Feb;205(2):827-841. doi: 10.1534/genetics.116.197285. Epub 2016 Dec 10.

12.

Current CRISPR gene drive systems are likely to be highly invasive in wild populations.

Noble C, Adlam B, Church GM, Esvelt KM, Nowak MA.

Elife. 2018 Jun 19;7. pii: e33423. doi: 10.7554/eLife.33423.

13.

Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field.

He ZY, Men K, Qin Z, Yang Y, Xu T, Wei YQ.

Sci China Life Sci. 2017 May;60(5):458-467. doi: 10.1007/s11427-017-9033-0. Epub 2017 May 2. Review.

PMID:
28527117
14.

CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified Cas9 enzyme.

Michno JM, Wang X, Liu J, Curtin SJ, Kono TJ, Stupar RM.

GM Crops Food. 2015;6(4):243-52. doi: 10.1080/21645698.2015.1106063.

15.

Potential pitfalls of CRISPR/Cas9-mediated genome editing.

Peng R, Lin G, Li J.

FEBS J. 2016 Apr;283(7):1218-31. doi: 10.1111/febs.13586. Epub 2015 Nov 27. Review.

16.

A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae.

Hammond A, Galizi R, Kyrou K, Simoni A, Siniscalchi C, Katsanos D, Gribble M, Baker D, Marois E, Russell S, Burt A, Windbichler N, Crisanti A, Nolan T.

Nat Biotechnol. 2016 Jan;34(1):78-83. doi: 10.1038/nbt.3439. Epub 2015 Dec 7.

17.

Modulating CRISPR gene drive activity through nucleocytoplasmic localization of Cas9 in S. cerevisiae.

Goeckel ME, Basgall EM, Lewis IC, Goetting SC, Yan Y, Halloran M, Finnigan GC.

Fungal Biol Biotechnol. 2019 Feb 4;6:2. doi: 10.1186/s40694-019-0065-x. eCollection 2019.

18.

Concerning RNA-guided gene drives for the alteration of wild populations.

Esvelt KM, Smidler AL, Catteruccia F, Church GM.

Elife. 2014 Jul 17;3. pii: e03401. doi: 10.7554/eLife.03401. Review.

19.

Inbreeding promotes female promiscuity.

Michalczyk Ł, Millard AL, Martin OY, Lumley AJ, Emerson BC, Chapman T, Gage MJ.

Science. 2011 Sep 23;333(6050):1739-42. doi: 10.1126/science.1207314.

20.

Supplemental Content

Support Center