Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

The Crucial Role of DNA Methylation and MeCP2 in Neuronal Function.

Fasolino M, Zhou Z.

Genes (Basel). 2017 May 13;8(5). pii: E141. doi: 10.3390/genes8050141. Review.

2.

Active DNA demethylation in post-mitotic neurons: a reason for optimism.

Gavin DP, Chase KA, Sharma RP.

Neuropharmacology. 2013 Dec;75:233-45. doi: 10.1016/j.neuropharm.2013.07.036. Epub 2013 Aug 16. Review.

3.

Epigenetic regulation in human melanoma: past and future.

Sarkar D, Leung EY, Baguley BC, Finlay GJ, Askarian-Amiri ME.

Epigenetics. 2015;10(2):103-21. doi: 10.1080/15592294.2014.1003746. Review.

4.

Shaping synaptic plasticity: the role of activity-mediated epigenetic regulation on gene transcription.

Cortés-Mendoza J, Díaz de León-Guerrero S, Pedraza-Alva G, Pérez-Martínez L.

Int J Dev Neurosci. 2013 Oct;31(6):359-69. doi: 10.1016/j.ijdevneu.2013.04.003. Epub 2013 May 9. Review.

PMID:
23665156
5.

Local chromatin microenvironment determines DNMT activity: from DNA methyltransferase to DNA demethylase or DNA dehydroxymethylase.

van der Wijst MG, Venkiteswaran M, Chen H, Xu GL, Plösch T, Rots MG.

Epigenetics. 2015;10(8):671-6. doi: 10.1080/15592294.2015.1062204. Review.

6.

Ethanol deregulates Mecp2/MeCP2 in differentiating neural stem cells via interplay between 5-methylcytosine and 5-hydroxymethylcytosine at the Mecp2 regulatory elements.

Liyanage VR, Zachariah RM, Davie JR, Rastegar M.

Exp Neurol. 2015 Mar;265:102-17. doi: 10.1016/j.expneurol.2015.01.006. Epub 2015 Jan 22.

7.

Association of modified cytosines and the methylated DNA-binding protein MeCP2 with distinctive structural domains of lampbrush chromatin.

Morgan GT, Jones P, Bellini M.

Chromosome Res. 2012 Dec;20(8):925-42. doi: 10.1007/s10577-012-9324-x.

8.

Reading the unique DNA methylation landscape of the brain: Non-CpG methylation, hydroxymethylation, and MeCP2.

Kinde B, Gabel HW, Gilbert CS, Griffith EC, Greenberg ME.

Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):6800-6. doi: 10.1073/pnas.1411269112. Epub 2015 Mar 4. Review.

9.

Cocaine represses protein phosphatase-1Cβ through DNA methylation and Methyl-CpG Binding Protein-2 recruitment in adult rat brain.

Pol Bodetto S, Carouge D, Fonteneau M, Dietrich JB, Zwiller J, Anglard P.

Neuropharmacology. 2013 Oct;73:31-40. doi: 10.1016/j.neuropharm.2013.05.005. Epub 2013 May 18.

PMID:
23688924
10.

DNA Methylation and Adult Neurogenesis.

Jobe EM, Zhao X.

Brain Plast. 2017 Nov 9;3(1):5-26. doi: 10.3233/BPL-160034. Review.

11.

Genetic alterations of DNA methylation machinery in human diseases.

Hamidi T, Singh AK, Chen T.

Epigenomics. 2015;7(2):247-65. doi: 10.2217/epi.14.80. Review.

PMID:
25942534
12.

Epigenetic regulation of RELN and GAD1 in the frontal cortex (FC) of autism spectrum disorder (ASD) subjects.

Zhubi A, Chen Y, Guidotti A, Grayson DR.

Int J Dev Neurosci. 2017 Nov;62:63-72. doi: 10.1016/j.ijdevneu.2017.02.003. Epub 2017 Feb 14.

13.

Gene methylation in gastric cancer.

Qu Y, Dang S, Hou P.

Clin Chim Acta. 2013 Sep 23;424:53-65. doi: 10.1016/j.cca.2013.05.002. Epub 2013 May 10. Review.

14.

DNA modifications: function and applications in normal and disease States.

Liyanage VR, Jarmasz JS, Murugeshan N, Del Bigio MR, Rastegar M, Davie JR.

Biology (Basel). 2014 Oct 22;3(4):670-723. doi: 10.3390/biology3040670. Review.

15.

Reciprocal changes in DNA methylation and hydroxymethylation and a broad repressive epigenetic switch characterize FMR1 transcriptional silencing in fragile X syndrome.

Brasa S, Mueller A, Jacquemont S, Hahne F, Rozenberg I, Peters T, He Y, McCormack C, Gasparini F, Chibout SD, Grenet O, Moggs J, Gomez-Mancilla B, Terranova R.

Clin Epigenetics. 2016 Feb 5;8:15. doi: 10.1186/s13148-016-0181-x. eCollection 2016.

16.

Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells.

Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, Barbera AJ, Zheng L, Zhang H, Huang S, Min J, Nicholson T, Chen T, Xu G, Shi Y, Zhang K, Shi YG.

Mol Cell. 2011 May 20;42(4):451-64. doi: 10.1016/j.molcel.2011.04.005. Epub 2011 Apr 21.

17.

Epigenetics: A primer for clinicians.

Paluch BE, Naqash AR, Brumberger Z, Nemeth MJ, Griffiths EA.

Blood Rev. 2016 Jul;30(4):285-95. doi: 10.1016/j.blre.2016.02.002. Epub 2016 Feb 26. Review.

18.

MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system.

Mellén M, Ayata P, Dewell S, Kriaucionis S, Heintz N.

Cell. 2012 Dec 21;151(7):1417-30. doi: 10.1016/j.cell.2012.11.022.

19.

MeCP2 binds to non-CG methylated DNA as neurons mature, influencing transcription and the timing of onset for Rett syndrome.

Chen L, Chen K, Lavery LA, Baker SA, Shaw CA, Li W, Zoghbi HY.

Proc Natl Acad Sci U S A. 2015 Apr 28;112(17):5509-14. doi: 10.1073/pnas.1505909112. Epub 2015 Apr 13. Erratum in: Proc Natl Acad Sci U S A. 2015 Jun 2;112(22):E2982.

20.

Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation.

Wu H, Zhang Y.

Genes Dev. 2011 Dec 1;25(23):2436-52. doi: 10.1101/gad.179184.111. Review.

Supplemental Content

Support Center