Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 120

1.

Enabling Reverse Genetics in Medicago truncatula Using High-Throughput Sequencing for Tnt1 Flanking Sequence Recovery.

Cheng X, Krom N, Zhang S, Mysore KS, Udvardi M, Wen J.

Methods Mol Biol. 2017;1610:25-37. doi: 10.1007/978-1-4939-7003-2_3.

PMID:
28439855
2.

Reverse genetics in medicago truncatula using Tnt1 insertion mutants.

Cheng X, Wen J, Tadege M, Ratet P, Mysore KS.

Methods Mol Biol. 2011;678:179-90. doi: 10.1007/978-1-60761-682-5_13.

PMID:
20931380
3.

Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula.

Tadege M, Wen J, He J, Tu H, Kwak Y, Eschstruth A, Cayrel A, Endre G, Zhao PX, Chabaud M, Ratet P, Mysore KS.

Plant J. 2008 Apr;54(2):335-47. doi: 10.1111/j.1365-313X.2008.03418.x. Epub 2008 Jan 16.

4.

Tnt1 Insertional Mutagenesis in Medicago truncatula.

Lee HK, Mysore KS, Wen J.

Methods Mol Biol. 2018;1822:107-114. doi: 10.1007/978-1-4939-8633-0_7.

PMID:
30043299
5.

An efficient reverse genetics platform in the model legume Medicago truncatula.

Cheng X, Wang M, Lee HK, Tadege M, Ratet P, Udvardi M, Mysore KS, Wen J.

New Phytol. 2014 Feb;201(3):1065-76. doi: 10.1111/nph.12575. Epub 2013 Nov 11.

6.

Rapid identification of causative insertions underlying Medicago truncatula Tnt1 mutants defective in symbiotic nitrogen fixation from a forward genetic screen by whole genome sequencing.

Veerappan V, Jani M, Kadel K, Troiani T, Gale R, Mayes T, Shulaev E, Wen J, Mysore KS, Azad RK, Dickstein R.

BMC Genomics. 2016 Feb 27;17:141. doi: 10.1186/s12864-016-2452-5.

7.

Genome-wide analysis of flanking sequences reveals that Tnt1 insertion is positively correlated with gene methylation in Medicago truncatula.

Sun L, Gill US, Nandety RS, Kwon S, Mehta P, Dickstein R, Udvardi MK, Mysore KS, Wen J.

Plant J. 2019 Feb 18. doi: 10.1111/tpj.14291. [Epub ahead of print]

PMID:
30776165
8.

Osmotic shock improves Tnt1 transposition frequency in Medicago truncatula cv Jemalong during in vitro regeneration.

Iantcheva A, Chabaud M, Cosson V, Barascud M, Schutz B, Primard-Brisset C, Durand P, Barker DG, Vlahova M, Ratet P.

Plant Cell Rep. 2009 Oct;28(10):1563-72. doi: 10.1007/s00299-009-0755-6. Epub 2009 Aug 18.

PMID:
19688215
9.

Forward genetics screening of Medicago truncatula Tnt1 insertion lines.

Yarce JC, Lee HK, Tadege M, Ratet P, Mysore KS.

Methods Mol Biol. 2013;1069:93-100. doi: 10.1007/978-1-62703-613-9_8.

PMID:
23996311
10.

Efficient transposition of the Tnt1 tobacco retrotransposon in the model legume Medicago truncatula.

d'Erfurth I, Cosson V, Eschstruth A, Lucas H, Kondorosi A, Ratet P.

Plant J. 2003 Apr;34(1):95-106.

11.

A Medicago truncatula tobacco retrotransposon insertion mutant collection with defects in nodule development and symbiotic nitrogen fixation.

Pislariu CI, Murray JD, Wen J, Cosson V, Muni RR, Wang M, Benedito VA, Andriankaja A, Cheng X, Jerez IT, Mondy S, Zhang S, Taylor ME, Tadege M, Ratet P, Mysore KS, Chen R, Udvardi MK.

Plant Physiol. 2012 Aug;159(4):1686-99. doi: 10.1104/pp.112.197061. Epub 2012 Jun 7.

12.

Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1-like functions in legumes.

Benlloch R, d'Erfurth I, Ferrandiz C, Cosson V, Beltrán JP, Cañas LA, Kondorosi A, Madueño F, Ratet P.

Plant Physiol. 2006 Nov;142(3):972-83. Epub 2006 Sep 8.

13.

From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa.

Gou J, Debnath S, Sun L, Flanagan A, Tang Y, Jiang Q, Wen J, Wang ZY.

Plant Biotechnol J. 2018 Apr;16(4):951-962. doi: 10.1111/pbi.12841. Epub 2017 Oct 17.

14.

ITIS, a bioinformatics tool for accurate identification of transposon insertion sites using next-generation sequencing data.

Jiang C, Chen C, Huang Z, Liu R, Verdier J.

BMC Bioinformatics. 2015 Mar 5;16:72. doi: 10.1186/s12859-015-0507-2.

15.

From model to crop: functional analysis of a STAY-GREEN gene in the model legume Medicago truncatula and effective use of the gene for alfalfa improvement.

Zhou C, Han L, Pislariu C, Nakashima J, Fu C, Jiang Q, Quan L, Blancaflor EB, Tang Y, Bouton JH, Udvardi M, Xia G, Wang ZY.

Plant Physiol. 2011 Nov;157(3):1483-96. doi: 10.1104/pp.111.185140. Epub 2011 Sep 28.

16.

Model Legumes: Functional Genomics Tools in Medicago truncatula.

Cañas LA, Beltrán JP.

Methods Mol Biol. 2018;1822:11-37. doi: 10.1007/978-1-4939-8633-0_2. Review.

PMID:
30043294
17.

Reverse genetics in Medicago truncatula using a TILLING mutant collection.

Carelli M, Calderini O, Panara F, Porceddu A, Losini I, Piffanelli P, Arcioni S, Scotti C.

Methods Mol Biol. 2013;1069:101-18. doi: 10.1007/978-1-62703-613-9_9.

PMID:
23996312
18.

Retroelement insertions at the Medicago FTa1 locus in spring mutants eliminate vernalisation but not long-day requirements for early flowering.

Jaudal M, Yeoh CC, Zhang L, Stockum C, Mysore KS, Ratet P, Putterill J.

Plant J. 2013 Nov;76(4):580-91. doi: 10.1111/tpj.12315. Epub 2013 Oct 5.

19.

An NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula.

Zhao Q, Gallego-Giraldo L, Wang H, Zeng Y, Ding SY, Chen F, Dixon RA.

Plant J. 2010 Jul 1;63(1):100-14. doi: 10.1111/j.1365-313X.2010.04223.x. Epub 2010 Apr 7.

20.

Recent Progress in Development of Tnt1 Functional Genomics Platform for Medicago truncatula and Lotus japonicus in Bulgaria.

Revalska M, Vassileva V, Goormachtig S, Van Hautegem T, Ratet P, Iantcheva A.

Curr Genomics. 2011 Apr;12(2):147-52. doi: 10.2174/138920211795564313.

Supplemental Content

Support Center