Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 221

1.

Exploring structural variation and gene family architecture with De Novo assemblies of 15 Medicago genomes.

Zhou P, Silverstein KA, Ramaraj T, Guhlin J, Denny R, Liu J, Farmer AD, Steele KP, Stupar RM, Miller JR, Tiffin P, Mudge J, Young ND.

BMC Genomics. 2017 Mar 27;18(1):261. doi: 10.1186/s12864-017-3654-1.

2.

A De Novo Genome Sequence Assembly of the Arabidopsis thaliana Accession Niederzenz-1 Displays Presence/Absence Variation and Strong Synteny.

Pucker B, Holtgräwe D, Rosleff Sörensen T, Stracke R, Viehöver P, Weisshaar B.

PLoS One. 2016 Oct 6;11(10):e0164321. doi: 10.1371/journal.pone.0164321. eCollection 2016.

4.

Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula.

Ameline-Torregrosa C, Wang BB, O'Bleness MS, Deshpande S, Zhu H, Roe B, Young ND, Cannon SB.

Plant Physiol. 2008 Jan;146(1):5-21. Epub 2007 Nov 2.

5.

Highly syntenic regions in the genomes of soybean, Medicago truncatula, and Arabidopsis thaliana.

Mudge J, Cannon SB, Kalo P, Oldroyd GE, Roe BA, Town CD, Young ND.

BMC Plant Biol. 2005 Aug 15;5:15.

6.

Hybrid assembly with long and short reads improves discovery of gene family expansions.

Miller JR, Zhou P, Mudge J, Gurtowski J, Lee H, Ramaraj T, Walenz BP, Liu J, Stupar RM, Denny R, Song L, Singh N, Maron LG, McCouch SR, McCombie WR, Schatz MC, Tiffin P, Young ND, Silverstein KAT.

BMC Genomics. 2017 Jul 19;18(1):541. doi: 10.1186/s12864-017-3927-8.

7.

Genomic characterization of the LEED..PEEDs, a gene family unique to the medicago lineage.

Trujillo DI, Silverstein KA, Young ND.

G3 (Bethesda). 2014 Aug 25;4(10):2003-12. doi: 10.1534/g3.114.011874.

8.

Whole-genome nucleotide diversity, recombination, and linkage disequilibrium in the model legume Medicago truncatula.

Branca A, Paape TD, Zhou P, Briskine R, Farmer AD, Mudge J, Bharti AK, Woodward JE, May GD, Gentzbittel L, Ben C, Denny R, Sadowsky MJ, Ronfort J, Bataillon T, Young ND, Tiffin P.

Proc Natl Acad Sci U S A. 2011 Oct 18;108(42):E864-70. doi: 10.1073/pnas.1104032108. Epub 2011 Sep 26.

9.

Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model, Medicago truncatula.

Moll KM, Zhou P, Ramaraj T, Fajardo D, Devitt NP, Sadowsky MJ, Stupar RM, Tiffin P, Miller JR, Young ND, Silverstein KAT, Mudge J.

BMC Genomics. 2017 Aug 4;18(1):578. doi: 10.1186/s12864-017-3971-4.

10.

Phylogeny and genomic organization of the TIR and non-tIR NBS-LRR resistance gene family in Medicago truncatula.

Zhu H, Cannon SB, Young ND, Cook DR.

Mol Plant Microbe Interact. 2002 Jun;15(6):529-39.

11.

Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology.

Cheung F, Haas BJ, Goldberg SM, May GD, Xiao Y, Town CD.

BMC Genomics. 2006 Oct 24;7:272.

12.

Genome wide re-sequencing of newly developed Rice Lines from common wild rice (Oryza rufipogon Griff.) for the identification of NBS-LRR genes.

Liu W, Ghouri F, Yu H, Li X, Yu S, Shahid MQ, Liu X.

PLoS One. 2017 Jul 11;12(7):e0180662. doi: 10.1371/journal.pone.0180662. eCollection 2017.

13.

Exploring structural variants in environmentally sensitive gene families.

Young ND, Zhou P, Silverstein KA.

Curr Opin Plant Biol. 2016 Apr;30:19-24. doi: 10.1016/j.pbi.2015.12.012. Epub 2016 Feb 8. Review.

PMID:
26855303
14.

An improved genome release (version Mt4.0) for the model legume Medicago truncatula.

Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs KL, Yandell M, Gundlach H, Mayer KF, Schwartz DC, Town CD.

BMC Genomics. 2014 Apr 27;15:312. doi: 10.1186/1471-2164-15-312.

15.

Genome variations account for different response to three mineral elements between Medicago truncatula ecotypes Jemalong A17 and R108.

Wang TZ, Tian QY, Wang BL, Zhao MG, Zhang WH.

BMC Plant Biol. 2014 May 6;14:122. doi: 10.1186/1471-2229-14-122.

16.

The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome.

Formey D, Sallet E, Lelandais-Brière C, Ben C, Bustos-Sanmamed P, Niebel A, Frugier F, Combier JP, Debellé F, Hartmann C, Poulain J, Gavory F, Wincker P, Roux C, Gentzbittel L, Gouzy J, Crespi M.

Genome Biol. 2014 Sep 24;15(9):457. doi: 10.1186/s13059-014-0457-4.

17.

Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules.

Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M.

Plant Cell. 2009 Sep;21(9):2780-96. doi: 10.1105/tpc.109.068130. Epub 2009 Sep 18.

18.

Population dynamics of miniature inverted-repeat transposable elements (MITEs) in Medicago truncatula.

Grzebelus D, Gładysz M, Macko-Podgórni A, Gambin T, Golis B, Rakoczy R, Gambin A.

Gene. 2009 Dec 15;448(2):214-20. doi: 10.1016/j.gene.2009.06.004. Epub 2009 Jun 17.

PMID:
19539732
19.

Whole genome de novo assemblies of three divergent strains of rice, Oryza sativa, document novel gene space of aus and indica.

Schatz MC, Maron LG, Stein JC, Hernandez Wences A, Gurtowski J, Biggers E, Lee H, Kramer M, Antoniou E, Ghiban E, Wright MH, Chia JM, Ware D, McCouch SR, McCombie WR.

Genome Biol. 2014;15(11):506.

20.

LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice.

Wang H, Liu JS.

BMC Genomics. 2008 Aug 10;9:382. doi: 10.1186/1471-2164-9-382.

Supplemental Content

Support Center