Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 97

1.

Natural variation for gene expression responses to abiotic stress in maize.

Waters AJ, Makarevitch I, Noshay J, Burghardt LT, Hirsch CN, Hirsch CD, Springer NM.

Plant J. 2017 Feb;89(4):706-717. doi: 10.1111/tpj.13414. Epub 2017 Feb 11.

2.
3.

Transcriptomic analysis of the maize (Zea mays L.) inbred line B73 response to heat stress at the seedling stage.

Qian Y, Ren Q, Zhang J, Chen L.

Gene. 2019 Apr 15;692:68-78. doi: 10.1016/j.gene.2018.12.062. Epub 2019 Jan 11.

PMID:
30641208
4.

Genome-wide expression profiling and phenotypic evaluation of European maize inbreds at seedling stage in response to heat stress.

Frey FP, Urbany C, Hüttel B, Reinhardt R, Stich B.

BMC Genomics. 2015 Feb 25;16:123. doi: 10.1186/s12864-015-1282-1.

5.

Natural variation for alleles under epigenetic control by the maize chromomethylase zmet2.

Makarevitch I, Stupar RM, Iniguez AL, Haun WJ, Barbazuk WB, Kaeppler SM, Springer NM.

Genetics. 2007 Oct;177(2):749-60. Epub 2007 Jul 29.

6.

Complementation contributes to transcriptome complexity in maize (Zea mays L.) hybrids relative to their inbred parents.

Paschold A, Jia Y, Marcon C, Lund S, Larson NB, Yeh CT, Ossowski S, Lanz C, Nettleton D, Schnable PS, Hochholdinger F.

Genome Res. 2012 Dec;22(12):2445-54. doi: 10.1101/gr.138461.112. Epub 2012 Oct 19.

7.
8.

Draft Assembly of Elite Inbred Line PH207 Provides Insights into Genomic and Transcriptome Diversity in Maize.

Hirsch CN, Hirsch CD, Brohammer AB, Bowman MJ, Soifer I, Barad O, Shem-Tov D, Baruch K, Lu F, Hernandez AG, Fields CJ, Wright CL, Koehler K, Springer NM, Buckler E, Buell CR, de Leon N, Kaeppler SM, Childs KL, Mikel MA.

Plant Cell. 2016 Nov;28(11):2700-2714. Epub 2016 Nov 1.

9.

Transposable elements contribute to activation of maize genes in response to abiotic stress.

Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J, Springer NM.

PLoS Genet. 2015 Jan 8;11(1):e1004915. doi: 10.1371/journal.pgen.1004915. eCollection 2015 Jan. Erratum in: PLoS Genet. 2015 Oct;11(10):e1005566.

10.

Global analysis of gene expression in maize leaves treated with low temperature. II. Combined effect of severe cold (8 °C) and circadian rhythm.

Jończyk M, Sobkowiak A, Trzcinska-Danielewicz J, Skoneczny M, Solecka D, Fronk J, Sowiński P.

Plant Mol Biol. 2017 Oct;95(3):279-302. doi: 10.1007/s11103-017-0651-3. Epub 2017 Aug 21.

PMID:
28828699
11.

Mendelian and non-Mendelian regulation of gene expression in maize.

Li L, Petsch K, Shimizu R, Liu S, Xu WW, Ying K, Yu J, Scanlon MJ, Schnable PS, Timmermans MC, Springer NM, Muehlbauer GJ.

PLoS Genet. 2013;9(1):e1003202. doi: 10.1371/journal.pgen.1003202. Epub 2013 Jan 17. Erratum in: PLoS Genet. 2018 Feb 14;14 (2):e1007234.

12.

Transcriptome profiling and comparison of maize ear heterosis during the spikelet and floret differentiation stages.

Hu X, Wang H, Diao X, Liu Z, Li K, Wu Y, Liang Q, Wang H, Huang C.

BMC Genomics. 2016 Nov 22;17(1):959.

13.

Genetic and molecular characterization of submergence response identifies Subtol6 as a major submergence tolerance locus in maize.

Campbell MT, Proctor CA, Dou Y, Schmitz AJ, Phansak P, Kruger GR, Zhang C, Walia H.

PLoS One. 2015 Mar 25;10(3):e0120385. doi: 10.1371/journal.pone.0120385. eCollection 2015.

14.

Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays.

Liu Z, Kumari S, Zhang L, Zheng Y, Ware D.

PLoS One. 2012;7(6):e39786. doi: 10.1371/journal.pone.0039786. Epub 2012 Jun 29.

15.

Nonsyntenic Genes Drive Tissue-Specific Dynamics of Differential, Nonadditive, and Allelic Expression Patterns in Maize Hybrids.

Baldauf JA, Marcon C, Paschold A, Hochholdinger F.

Plant Physiol. 2016 Jun;171(2):1144-55. doi: 10.1104/pp.16.00262. Epub 2016 Apr 19.

16.

Allele specific expression analysis identifies regulatory variation associated with stress-related genes in the Mexican highland maize landrace Palomero Toluqueño.

Aguilar-Rangel MR, Chávez Montes RA, González-Segovia E, Ross-Ibarra J, Simpson JK, Sawers RJH.

PeerJ. 2017 Aug 23;5:e3737. doi: 10.7717/peerj.3737. eCollection 2017.

17.

Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings.

Zhai L, Liu Z, Zou X, Jiang Y, Qiu F, Zheng Y, Zhang Z.

Physiol Plant. 2013 Feb;147(2):181-93. doi: 10.1111/j.1399-3054.2012.01653.x. Epub 2012 Jun 27.

PMID:
22607471
18.

Response of maize serine/arginine-rich protein gene family in seedlings to drought stress.

Li J, Guo Y, Cui W, Xu A, Tian Z.

Yi Chuan. 2014 Jul;36(7):697-706. doi: 10.3724/SP.J.1005.2014.0697.

PMID:
25076035
19.

Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines.

Sobkowiak A, Jończyk M, Jarochowska E, Biecek P, Trzcinska-Danielewicz J, Leipner J, Fronk J, Sowiński P.

Plant Mol Biol. 2014 Jun;85(3):317-31. doi: 10.1007/s11103-014-0187-8. Epub 2014 Mar 13.

20.

Heterosis in early maize ear inflorescence development: a genome-wide transcription analysis for two maize inbred lines and their hybrid.

Ding H, Qin C, Luo X, Li L, Chen Z, Liu H, Gao J, Lin H, Shen Y, Zhao M, Lübberstedt T, Zhang Z, Pan G.

Int J Mol Sci. 2014 Aug 11;15(8):13892-915. doi: 10.3390/ijms150813892.

Supplemental Content

Support Center