Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Higher fungal diversity is correlated with lower CO2 emissions from dead wood in a natural forest.

Yang C, Schaefer DA, Liu W, Popescu VD, Yang C, Wang X, Wu C, Yu DW.

Sci Rep. 2016 Aug 24;6:31066. doi: 10.1038/srep31066.

2.

Bacteria associated with decomposing dead wood in a natural temperate forest.

Tláskal V, Zrustová P, Vrška T, Baldrian P.

FEMS Microbiol Ecol. 2017 Dec 1;93(12). doi: 10.1093/femsec/fix157.

PMID:
29126113
3.

Species composition of saproxylic fungal communities on decaying logs in the boreal forest.

Kebli H, Drouin P, Brais S, Kernaghan G.

Microb Ecol. 2011 May;61(4):898-910. doi: 10.1007/s00248-010-9790-7. Epub 2011 Jan 19.

PMID:
21246195
4.

Changes within a single land-use category alter microbial diversity and community structure: molecular evidence from wood-inhabiting fungi in forest ecosystems.

Purahong W, Hoppe B, Kahl T, Schloter M, Schulze ED, Bauhus J, Buscot F, Krüger D.

J Environ Manage. 2014 Jun 15;139:109-19. doi: 10.1016/j.jenvman.2014.02.031. Epub 2014 Mar 27.

PMID:
24681650
5.

Temporal trends and sources of variation in carbon flux from coarse woody debris in experimental forest canopy openings.

Forrester JA, Mladenoff DJ, D'Amato AW, Fraver S, Lindner DL, Brazee NJ, Clayton MK, Gower ST.

Oecologia. 2015 Nov;179(3):889-900. doi: 10.1007/s00442-015-3393-4. Epub 2015 Jul 23.

PMID:
26201261
6.

Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest.

Sun H, Terhonen E, Kovalchuk A, Tuovila H, Chen H, Oghenekaro AO, Heinonsalo J, Kohler A, Kasanen R, Vasander H, Asiegbu FO.

Appl Environ Microbiol. 2016 Apr 18;82(9):2632-2643. doi: 10.1128/AEM.03858-15. Print 2016 May.

7.

Vertical Structure of Phyllosphere Fungal Communities in a Tropical Forest in Thailand Uncovered by High-Throughput Sequencing.

Izuno A, Kanzaki M, Artchawakom T, Wachrinrat C, Isagi Y.

PLoS One. 2016 Nov 18;11(11):e0166669. doi: 10.1371/journal.pone.0166669. eCollection 2016.

8.

Community turnover of wood-inhabiting fungi across hierarchical spatial scales.

Abrego N, García-Baquero G, Halme P, Ovaskainen O, Salcedo I.

PLoS One. 2014 Jul 24;9(7):e103416. doi: 10.1371/journal.pone.0103416. eCollection 2014.

9.

Bacteria in decomposing wood and their interactions with wood-decay fungi.

Johnston SR, Boddy L, Weightman AJ.

FEMS Microbiol Ecol. 2016 Nov;92(11). pii: fiw179. doi: 10.1093/femsec/fiw179. Epub 2016 Aug 23. Review.

PMID:
27559028
10.

Assemblage composition of fungal wood-decay species has a major influence on how climate and wood quality modify decomposition.

Venugopal P, Junninen K, Edman M, Kouki J.

FEMS Microbiol Ecol. 2017 Mar 1;93(3). doi: 10.1093/femsec/fix002.

PMID:
28073802
11.

Fungal community structure of fallen pine and oak wood at different stages of decomposition in the Qinling Mountains, China.

Yuan J, Zheng X, Cheng F, Zhu X, Hou L, Li J, Zhang S.

Sci Rep. 2017 Oct 24;7(1):13866. doi: 10.1038/s41598-017-14425-6.

12.

[Diversity and distribution character of wood-rotting fungi in the secondary forest ecosystem of Liaodong areas, Northeast China].

Zhang LY, Wei YL, Li T.

Ying Yong Sheng Tai Xue Bao. 2016 Dec;27(12):3882-3888. doi: 10.13287/j.1001-9332.201612.032. Chinese.

PMID:
29704346
13.

Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem.

Lipson DA, Kuske CR, Gallegos-Graves LV, Oechel WC.

Glob Chang Biol. 2014 Aug;20(8):2555-65. doi: 10.1111/gcb.12609. Epub 2014 May 26.

PMID:
24753089
14.

Simulated nitrogen deposition affects wood decomposition by cord-forming fungi.

Bebber DP, Watkinson SC, Boddy L, Darrah PR.

Oecologia. 2011 Dec;167(4):1177-84. doi: 10.1007/s00442-011-2057-2. Epub 2011 Jul 7.

PMID:
21735202
15.

Linking fungal communities to wood density loss after 12 years of log decay.

Kubartová A, Ottosson E, Stenlid J.

FEMS Microbiol Ecol. 2015 May;91(5). pii: fiv032. doi: 10.1093/femsec/fiv032. Epub 2015 Mar 30.

PMID:
25873458
16.

Assembly history dictates ecosystem functioning: evidence from wood decomposer communities.

Fukami T, Dickie IA, Paula Wilkie J, Paulus BC, Park D, Roberts A, Buchanan PK, Allen RB.

Ecol Lett. 2010 Jun;13(6):675-84. doi: 10.1111/j.1461-0248.2010.01465.x. Epub 2010 Apr 16.

PMID:
20412280
17.

Relationships between soil fungal and woody plant assemblages differ between ridge and valley habitats in a subtropical mountain forest.

Gao C, Shi NN, Chen L, Ji NN, Wu BW, Wang YL, Xu Y, Zheng Y, Mi XC, Ma KP, Guo LD.

New Phytol. 2017 Mar;213(4):1874-1885. doi: 10.1111/nph.14287. Epub 2016 Nov 7.

18.

Establishment of ectomycorrhizal fungal community on isolated Nothofagus cunninghamii seedlings regenerating on dead wood in Australian wet temperate forests: does fruit-body type matter?

Tedersoo L, Gates G, Dunk CW, Lebel T, May TW, Kõljalg U, Jairus T.

Mycorrhiza. 2009 Aug;19(6):403-416. doi: 10.1007/s00572-009-0244-3. Epub 2009 Apr 18.

PMID:
19377891
19.

Relationship between the decomposition process of coarse woody debris and fungal community structure as detected by high-throughput sequencing in a deciduous broad-leaved forest in Japan.

Yamashita S, Masuya H, Abe S, Masaki T, Okabe K.

PLoS One. 2015 Jun 25;10(6):e0131510. doi: 10.1371/journal.pone.0131510. eCollection 2015.

20.

Fungal community dynamics in relation to substrate quality of decaying Norway spruce ( Picea abies [L.] Karst.) logs in boreal forests.

Rajala T, Peltoniemi M, Pennanen T, Mäkipää R.

FEMS Microbiol Ecol. 2012 Aug;81(2):494-505. doi: 10.1111/j.1574-6941.2012.01376.x. Epub 2012 Apr 23.

Supplemental Content

Support Center