Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 121

1.

Genome-wide associations with flowering time in switchgrass using exome-capture sequencing data.

Grabowski PP, Evans J, Daum C, Deshpande S, Barry KW, Kennedy M, Ramstein G, Kaeppler SM, Buell CR, Jiang Y, Casler MD.

New Phytol. 2017 Jan;213(1):154-169. doi: 10.1111/nph.14101. Epub 2016 Jul 22.

2.

Nucleotide polymorphism and copy number variant detection using exome capture and next-generation sequencing in the polyploid grass Panicum virgatum.

Evans J, Kim J, Childs KL, Vaillancourt B, Crisovan E, Nandety A, Gerhardt DJ, Richmond TA, Jeddeloh JA, Kaeppler SM, Casler MD, Buell CR.

Plant J. 2014 Sep;79(6):993-1008. doi: 10.1111/tpj.12601. Epub 2014 Aug 11.

3.

Diversity and population structure of northern switchgrass as revealed through exome capture sequencing.

Evans J, Crisovan E, Barry K, Daum C, Jenkins J, Kunde-Ramamoorthy G, Nandety A, Ngan CY, Vaillancourt B, Wei CL, Schmutz J, Kaeppler SM, Casler MD, Buell CR.

Plant J. 2015 Nov;84(4):800-15. doi: 10.1111/tpj.13041.

4.

Accuracy of Genomic Prediction in Switchgrass (Panicum virgatum L.) Improved by Accounting for Linkage Disequilibrium.

Ramstein GP, Evans J, Kaeppler SM, Mitchell RB, Vogel KP, Buell CR, Casler MD.

G3 (Bethesda). 2016 Apr 7;6(4):1049-62. doi: 10.1534/g3.115.024950.

5.

Candidate Variants for Additive and Interactive Effects on Bioenergy Traits in Switchgrass (Panicum virgatum L.) Identified by Genome-Wide Association Analyses.

Ramstein GP, Evans J, Nandety A, Saha MC, Brummer EC, Kaeppler SM, Buell CR, Casler MD.

Plant Genome. 2018 Nov;11(3). doi: 10.3835/plantgenome2018.01.0002.

6.

Genome-Wide Association Study in Pseudo-F2 Populations of Switchgrass Identifies Genetic Loci Affecting Heading and Anthesis Dates.

Taylor M, Tornqvist CE, Zhao X, Grabowski P, Doerge R, Ma J, Volenec J, Evans J, Ramstein GP, Sanciangco MD, Buell CR, Casler MD, Jiang Y.

Front Plant Sci. 2018 Sep 13;9:1250. doi: 10.3389/fpls.2018.01250. eCollection 2018.

7.

Overexpression of AtLOV1 in Switchgrass alters plant architecture, lignin content, and flowering time.

Xu B, Sathitsuksanoh N, Tang Y, Udvardi MK, Zhang JY, Shen Z, Balota M, Harich K, Zhang PY, Zhao B.

PLoS One. 2012;7(12):e47399. doi: 10.1371/journal.pone.0047399. Epub 2012 Dec 26.

8.

Control of floral transition in the bioenergy crop switchgrass.

Niu L, Fu C, Lin H, Wolabu TW, Wu Y, Wang ZY, Tadege M.

Plant Cell Environ. 2016 Oct;39(10):2158-71. doi: 10.1111/pce.12769. Epub 2016 Jul 20.

PMID:
27233806
9.

Natural variation in genes potentially involved in plant architecture and adaptation in switchgrass (Panicum virgatum L.).

Bahri BA, Daverdin G, Xu X, Cheng JF, Barry KW, Brummer EC, Devos KM.

BMC Evol Biol. 2018 Jun 14;18(1):91. doi: 10.1186/s12862-018-1193-2.

10.

Identification, characterization, and gene expression analysis of nucleotide binding site (NB)-type resistance gene homologues in switchgrass.

Frazier TP, Palmer NA, Xie F, Tobias CM, Donze-Reiner TJ, Bombarely A, Childs KL, Shu S, Jenkins JW, Schmutz J, Zhang B, Sarath G, Zhao B.

BMC Genomics. 2016 Nov 8;17(1):892.

11.

Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol.

Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE.

PLoS Genet. 2013;9(1):e1003215. doi: 10.1371/journal.pgen.1003215. Epub 2013 Jan 17.

12.

Quantitative Trait Locus Mapping for Flowering Time in a Lowland × Upland Switchgrass Pseudo-F2 Population.

Tornqvist CE, Taylor M, Jiang Y, Evans J, Buell CR, Kaeppler SM, Casler MD.

Plant Genome. 2018 Jul;11(2). doi: 10.3835/plantgenome2017.10.0093.

13.

Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production.

Fu C, Sunkar R, Zhou C, Shen H, Zhang JY, Matts J, Wolf J, Mann DG, Stewart CN Jr, Tang Y, Wang ZY.

Plant Biotechnol J. 2012 May;10(4):443-52. doi: 10.1111/j.1467-7652.2011.00677.x. Epub 2012 Jan 12.

14.
15.

Population genomic variation reveals roles of history, adaptation and ploidy in switchgrass.

Grabowski PP, Morris GP, Casler MD, Borevitz JO.

Mol Ecol. 2014 Aug;23(16):4059-73. doi: 10.1111/mec.12845. Epub 2014 Jul 21.

16.

Contrasting metabolism in perenniating structures of upland and lowland switchgrass plants late in the growing season.

Palmer NA, Saathoff AJ, Tobias CM, Twigg P, Xia Y, Vogel KP, Madhavan S, Sattler SE, Sarath G.

PLoS One. 2014 Aug 18;9(8):e105138. doi: 10.1371/journal.pone.0105138. eCollection 2014.

17.

SNP discovery with EST and NextGen sequencing in switchgrass (Panicum virgatum L.).

Ersoz ES, Wright MH, Pangilinan JL, Sheehan MJ, Tobias C, Casler MD, Buckler ES, Costich DE.

PLoS One. 2012;7(9):e44112. doi: 10.1371/journal.pone.0044112. Epub 2012 Sep 25.

18.

Extensive Genetic Diversity is Present within North American Switchgrass Germplasm.

Evans J, Sanciangco MD, Lau KH, Crisovan E, Barry K, Daum C, Hundley H, Jenkins J, Kennedy M, Kunde-Ramamoorthy G, Vaillancourt B, Acharya A, Schmutz J, Saha M, Kaeppler SM, Brummer EC, Casler MD, Buell CR.

Plant Genome. 2018 Mar;11(1). doi: 10.3835/plantgenome2017.06.0055.

19.

Nitrogen remobilization and conservation, and underlying senescence-associated gene expression in the perennial switchgrass Panicum virgatum.

Yang J, Worley E, Ma Q, Li J, Torres-Jerez I, Li G, Zhao PX, Xu Y, Tang Y, Udvardi M.

New Phytol. 2016 Jul;211(1):75-89. doi: 10.1111/nph.13898. Epub 2016 Mar 3.

20.

Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus.

Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S.

PLoS One. 2013 Aug 30;8(8):e71377. doi: 10.1371/journal.pone.0071377. eCollection 2013.

Supplemental Content

Support Center