Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 159


Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms.

Baker P, Hill PJ, Snarr BD, Alnabelseya N, Pestrak MJ, Lee MJ, Jennings LK, Tam J, Melnyk RA, Parsek MR, Sheppard DC, Wozniak DJ, Howell PL.

Sci Adv. 2016 May 20;2(5):e1501632. doi: 10.1126/sciadv.1501632. eCollection 2016 May.


Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity.

Snarr BD, Baker P, Bamford NC, Sato Y, Liu H, Lehoux M, Gravelat FN, Ostapska H, Baistrocchi SR, Cerone RP, Filler EE, Parsek MR, Filler SG, Howell PL, Sheppard DC.

Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):7124-7129. doi: 10.1073/pnas.1702798114. Epub 2017 Jun 20.


A Survival Strategy for Pseudomonas aeruginosa That Uses Exopolysaccharides To Sequester and Store Iron To Stimulate Psl-Dependent Biofilm Formation.

Yu S, Wei Q, Zhao T, Guo Y, Ma LZ.

Appl Environ Microbiol. 2016 Oct 14;82(21):6403-6413. Print 2016 Nov 1.


Treatment with the Pseudomonas aeruginosa glycoside hydrolase PslG combats wound infection by improving antibiotic efficacy and host innate immune activity.

Pestrak MJ, Baker P, Dellos-Nolan S, Hill PJ, da Silva DP, Silver H, Lacdao I, Raju D, Parsek MR, Wozniak DJ, Howell PL.

Antimicrob Agents Chemother. 2019 Apr 15. pii: AAC.00234-19. doi: 10.1128/AAC.00234-19. [Epub ahead of print]


Characterization of the Pseudomonas aeruginosa Glycoside Hydrolase PslG Reveals That Its Levels Are Critical for Psl Polysaccharide Biosynthesis and Biofilm Formation.

Baker P, Whitfield GB, Hill PJ, Little DJ, Pestrak MJ, Robinson H, Wozniak DJ, Howell PL.

J Biol Chem. 2015 Nov 20;290(47):28374-87. doi: 10.1074/jbc.M115.674929. Epub 2015 Sep 30.


Exopolysaccharide-Repressing Small Molecules with Antibiofilm and Antivirulence Activity against Pseudomonas aeruginosa.

van Tilburg Bernardes E, Charron-Mazenod L, Reading DJ, Reckseidler-Zenteno SL, Lewenza S.

Antimicrob Agents Chemother. 2017 Apr 24;61(5). pii: e01997-16. doi: 10.1128/AAC.01997-16. Print 2017 May.


Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide-independent biofilms.

Cole SJ, Records AR, Orr MW, Linden SB, Lee VT.

Infect Immun. 2014 May;82(5):2048-58. doi: 10.1128/IAI.01652-14. Epub 2014 Mar 4.


The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix.

Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR.

Environ Microbiol. 2012 Aug;14(8):1913-28. doi: 10.1111/j.1462-2920.2011.02657.x. Epub 2011 Dec 19.


Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa.

Wang S, Yu S, Zhang Z, Wei Q, Yan L, Ai G, Liu H, Ma LZ.

Appl Environ Microbiol. 2014 Nov;80(21):6724-32. doi: 10.1128/AEM.01237-14. Epub 2014 Aug 29.


PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix.

Yu S, Su T, Wu H, Liu S, Wang D, Zhao T, Jin Z, Du W, Zhu MJ, Chua SL, Yang L, Zhu D, Gu L, Ma LZ.

Cell Res. 2015 Dec;25(12):1352-67. doi: 10.1038/cr.2015.129. Epub 2015 Nov 27.


Pseudomonas aeruginosa exopolysaccharide Psl promotes resistance to the biofilm inhibitor polysorbate 80.

Zegans ME, Wozniak D, Griffin E, Toutain-Kidd CM, Hammond JH, Garfoot A, Lam JS.

Antimicrob Agents Chemother. 2012 Aug;56(8):4112-22. doi: 10.1128/AAC.00373-12. Epub 2012 May 14.


The exopolysaccharide Psl-eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa.

Wang S, Liu X, Liu H, Zhang L, Guo Y, Yu S, Wozniak DJ, Ma LZ.

Environ Microbiol Rep. 2015 Apr;7(2):330-40. doi: 10.1111/1758-2229.12252. Epub 2015 Jan 23.


Association of Biofilm Formation, Psl Exopolysaccharide Expression, and Clinical Outcomes in Pseudomonas aeruginosa Keratitis: Analysis of Isolates in the Steroids for Corneal Ulcers Trial.

Zegans ME, DiGiandomenico A, Ray K, Naimie A, Keller AE, Stover CK, Lalitha P, Srinivasan M, Acharya NR, Lietman TM.

JAMA Ophthalmol. 2016 Apr;134(4):383-9. doi: 10.1001/jamaophthalmol.2015.5956.


Glycoside Hydrolases Degrade Polymicrobial Bacterial Biofilms in Wounds.

Fleming D, Chahin L, Rumbaugh K.

Antimicrob Agents Chemother. 2017 Jan 24;61(2). pii: e01998-16. doi: 10.1128/AAC.01998-16. Print 2017 Feb.


CdrA Interactions within the Pseudomonas aeruginosa Biofilm Matrix Safeguard It from Proteolysis and Promote Cellular Packing.

Reichhardt C, Wong C, Passos da Silva D, Wozniak DJ, Parsek MR.

MBio. 2018 Sep 25;9(5). pii: e01376-18. doi: 10.1128/mBio.01376-18.


Low concentrations of ethanol stimulate biofilm and pellicle formation in Pseudomonas aeruginosa.

Tashiro Y, Inagaki A, Ono K, Inaba T, Yawata Y, Uchiyama H, Nomura N.

Biosci Biotechnol Biochem. 2014;78(1):178-81. doi: 10.1080/09168451.2014.877828. Epub 2014 Apr 16.


The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa.

Colvin KM, Gordon VD, Murakami K, Borlee BR, Wozniak DJ, Wong GC, Parsek MR.

PLoS Pathog. 2011 Jan 27;7(1):e1001264. doi: 10.1371/journal.ppat.1001264.


Role of exopolysaccharides in Pseudomonas aeruginosa biofilm formation and architecture.

Ghafoor A, Hay ID, Rehm BH.

Appl Environ Microbiol. 2011 Aug;77(15):5238-46. doi: 10.1128/AEM.00637-11. Epub 2011 Jun 10.


Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post-transcriptionally regulated.

Ma L, Wang J, Wang S, Anderson EM, Lam JS, Parsek MR, Wozniak DJ.

Environ Microbiol. 2012 Aug;14(8):1995-2005. doi: 10.1111/j.1462-2920.2012.02753.x. Epub 2012 Apr 19.

Supplemental Content

Support Center