Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 1163

2.
3.

RAS/MAPK Activation Is Associated with Reduced Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer: Therapeutic Cooperation Between MEK and PD-1/PD-L1 Immune Checkpoint Inhibitors.

Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, Combs S, Rimm DL, Giltnane JM, Estrada MV, Sánchez V, Sanders ME, Cook RS, Pilkinton MA, Mallal SA, Wang K, Miller VA, Stephens PJ, Yelensky R, Doimi FD, Gómez H, Ryzhov SV, Darcy PK, Arteaga CL, Balko JM.

Clin Cancer Res. 2016 Mar 15;22(6):1499-509. doi: 10.1158/1078-0432.CCR-15-1125. Epub 2015 Oct 29. Erratum in: Clin Cancer Res. 2019 Feb 15;25(4):1437.

4.

Antibodies Against Immune Checkpoint Molecules Restore Functions of Tumor-Infiltrating T Cells in Hepatocellular Carcinomas.

Zhou G, Sprengers D, Boor PPC, Doukas M, Schutz H, Mancham S, Pedroza-Gonzalez A, Polak WG, de Jonge J, Gaspersz M, Dong H, Thielemans K, Pan Q, IJzermans JNM, Bruno MJ, Kwekkeboom J.

Gastroenterology. 2017 Oct;153(4):1107-1119.e10. doi: 10.1053/j.gastro.2017.06.017. Epub 2017 Jun 23.

PMID:
28648905
5.

Significance of evaluating tumor-infiltrating lymphocytes (TILs) and programmed cell death-ligand 1 (PD-L1) expression in breast cancer.

Kurozumi S, Fujii T, Matsumoto H, Inoue K, Kurosumi M, Horiguchi J, Kuwano H.

Med Mol Morphol. 2017 Dec;50(4):185-194. doi: 10.1007/s00795-017-0170-y. Epub 2017 Sep 21. Review.

PMID:
28936553
6.

Neoadjuvant Interferons: Critical for Effective PD-1-Based Immunotherapy in TNBC.

Brockwell NK, Owen KL, Zanker D, Spurling A, Rautela J, Duivenvoorden HM, Baschuk N, Caramia F, Loi S, Darcy PK, Lim E, Parker BS.

Cancer Immunol Res. 2017 Oct;5(10):871-884. doi: 10.1158/2326-6066.CIR-17-0150. Epub 2017 Aug 28.

7.

The combined presence of CD20 + B cells and PD-L1 + tumor-infiltrating lymphocytes in inflammatory breast cancer is prognostic of improved patient outcome.

Arias-Pulido H, Cimino-Mathews A, Chaher N, Qualls C, Joste N, Colpaert C, Marotti JD, Foisey M, Prossnitz ER, Emens LA, Fiering S.

Breast Cancer Res Treat. 2018 Sep;171(2):273-282. doi: 10.1007/s10549-018-4834-7. Epub 2018 Jun 1.

8.

Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs.

Allard B, Pommey S, Smyth MJ, Stagg J.

Clin Cancer Res. 2013 Oct 15;19(20):5626-35. doi: 10.1158/1078-0432.CCR-13-0545. Epub 2013 Aug 27.

9.

Inhibition of histone lysine-specific demethylase 1 elicits breast tumor immunity and enhances antitumor efficacy of immune checkpoint blockade.

Qin Y, Vasilatos SN, Chen L, Wu H, Cao Z, Fu Y, Huang M, Vlad AM, Lu B, Oesterreich S, Davidson NE, Huang Y.

Oncogene. 2019 Jan;38(3):390-405. doi: 10.1038/s41388-018-0451-5. Epub 2018 Aug 15.

10.

Combination Immunotherapy of MUC1 mRNA Nano-vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer.

Liu L, Wang Y, Miao L, Liu Q, Musetti S, Li J, Huang L.

Mol Ther. 2018 Jan 3;26(1):45-55. doi: 10.1016/j.ymthe.2017.10.020. Epub 2017 Dec 5.

11.
12.

Antitumor immunity is defective in T cell-specific microRNA-155-deficient mice and is rescued by immune checkpoint blockade.

Huffaker TB, Lee SH, Tang WW, Wallace JA, Alexander M, Runtsch MC, Larsen DK, Thompson J, Ramstead AG, Voth WP, Hu R, Round JL, Williams MA, O'Connell RM.

J Biol Chem. 2017 Nov 10;292(45):18530-18541. doi: 10.1074/jbc.M117.808121. Epub 2017 Sep 14.

13.

An immune stratification reveals a subset of PD-1/LAG-3 double-positive triple-negative breast cancers.

Bottai G, Raschioni C, Losurdo A, Di Tommaso L, Tinterri C, Torrisi R, Reis-Filho JS, Roncalli M, Sotiriou C, Santoro A, Mantovani A, Loi S, Santarpia L.

Breast Cancer Res. 2016 Dec 3;18(1):121.

14.
15.

The therapeutic candidate for immune checkpoint inhibitors elucidated by the status of tumor-infiltrating lymphocytes (TILs) and programmed death ligand 1 (PD-L1) expression in triple negative breast cancer (TNBC).

Tomioka N, Azuma M, Ikarashi M, Yamamoto M, Sato M, Watanabe KI, Yamashiro K, Takahashi M.

Breast Cancer. 2018 Jan;25(1):34-42. doi: 10.1007/s12282-017-0781-0. Epub 2017 May 9.

PMID:
28488168
16.

Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1.

Li CW, Lim SO, Chung EM, Kim YS, Park AH, Yao J, Cha JH, Xia W, Chan LC, Kim T, Chang SS, Lee HH, Chou CK, Liu YL, Yeh HC, Perillo EP, Dunn AK, Kuo CW, Khoo KH, Hsu JL, Wu Y, Hsu JM, Yamaguchi H, Huang TH, Sahin AA, Hortobagyi GN, Yoo SS, Hung MC.

Cancer Cell. 2018 Feb 12;33(2):187-201.e10. doi: 10.1016/j.ccell.2018.01.009.

17.

Enhanced T-cell immunity to osteosarcoma through antibody blockade of PD-1/PD-L1 interactions.

Lussier DM, O'Neill L, Nieves LM, McAfee MS, Holechek SA, Collins AW, Dickman P, Jacobsen J, Hingorani P, Blattman JN.

J Immunother. 2015 Apr;38(3):96-106. doi: 10.1097/CJI.0000000000000065.

18.

Timing of PD-1 Blockade Is Critical to Effective Combination Immunotherapy with Anti-OX40.

Messenheimer DJ, Jensen SM, Afentoulis ME, Wegmann KW, Feng Z, Friedman DJ, Gough MJ, Urba WJ, Fox BA.

Clin Cancer Res. 2017 Oct 15;23(20):6165-6177. doi: 10.1158/1078-0432.CCR-16-2677. Epub 2017 Aug 28.

19.

Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma.

Antonios JP, Soto H, Everson RG, Moughon D, Orpilla JR, Shin NP, Sedighim S, Treger J, Odesa S, Tucker A, Yong WH, Li G, Cloughesy TF, Liau LM, Prins RM.

Neuro Oncol. 2017 Jun 1;19(6):796-807. doi: 10.1093/neuonc/now287.

20.

PARP Inhibitor Upregulates PD-L1 Expression and Enhances Cancer-Associated Immunosuppression.

Jiao S, Xia W, Yamaguchi H, Wei Y, Chen MK, Hsu JM, Hsu JL, Yu WH, Du Y, Lee HH, Li CW, Chou CK, Lim SO, Chang SS, Litton J, Arun B, Hortobagyi GN, Hung MC.

Clin Cancer Res. 2017 Jul 15;23(14):3711-3720. doi: 10.1158/1078-0432.CCR-16-3215. Epub 2017 Feb 6.

Supplemental Content

Support Center