Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 118

1.

Adaptation to climate through flowering phenology: a case study in Medicago truncatula.

Burgarella C, Chantret N, Gay L, Prosperi JM, Bonhomme M, Tiffin P, Young ND, Ronfort J.

Mol Ecol. 2016 Jul;25(14):3397-415. doi: 10.1111/mec.13683. Epub 2016 Jun 30.

PMID:
27144929
2.

Genomic signature of adaptation to climate in Medicago truncatula.

Yoder JB, Stanton-Geddes J, Zhou P, Briskine R, Young ND, Tiffin P.

Genetics. 2014 Apr;196(4):1263-75. doi: 10.1534/genetics.113.159319. Epub 2014 Jan 17.

3.

Molecular adaptation in flowering and symbiotic recognition pathways: insights from patterns of polymorphism in the legume Medicago truncatula.

De Mita S, Chantret N, Loridon K, Ronfort J, Bataillon T.

BMC Evol Biol. 2011 Aug 1;11:229. doi: 10.1186/1471-2148-11-229.

4.

Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis.

Méndez-Vigo B, Picó FX, Ramiro M, Martínez-Zapater JM, Alonso-Blanco C.

Plant Physiol. 2011 Dec;157(4):1942-55. doi: 10.1104/pp.111.183426. Epub 2011 Oct 11.

5.

Crop-model assisted phenomics and genome-wide association study for climate adaptation of indica rice. 1. Phenology.

Dingkuhn M, Pasco R, Pasuquin JM, Damo J, Soulié JC, Raboin LM, Dusserre J, Sow A, Manneh B, Shrestha S, Balde A, Kretzschmar T.

J Exp Bot. 2017 Jul 10;68(15):4369-4388. doi: 10.1093/jxb/erx249. Erratum in: J Exp Bot. 2018 Jan 23;69(3):711.

PMID:
28922774
6.

Candidate genes and genetic architecture of symbiotic and agronomic traits revealed by whole-genome, sequence-based association genetics in Medicago truncatula.

Stanton-Geddes J, Paape T, Epstein B, Briskine R, Yoder J, Mudge J, Bharti AK, Farmer AD, Zhou P, Denny R, May GD, Erlandson S, Yakub M, Sugawara M, Sadowsky MJ, Young ND, Tiffin P.

PLoS One. 2013 May 31;8(5):e65688. doi: 10.1371/journal.pone.0065688. Print 2013.

7.

Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula.

Pierre JB, Huguet T, Barre P, Huyghe C, Julier B.

Theor Appl Genet. 2008 Aug;117(4):609-20. doi: 10.1007/s00122-008-0805-4. Epub 2008 Jun 14.

PMID:
18553068
8.

Genomic Signatures of Adaptation to a Precipitation Gradient in Nigerian Sorghum.

Olatoye MO, Hu Z, Maina F, Morris GP.

G3 (Bethesda). 2018 Oct 3;8(10):3269-3281. doi: 10.1534/g3.118.200551.

9.

A tandem array of CBF/DREB1 genes is located in a major freezing tolerance QTL region on Medicago truncatula chromosome 6.

Tayeh N, Bahrman N, Sellier H, Bluteau A, Blassiau C, Fourment J, Bellec A, Debellé F, Lejeune-Hénaut I, Delbreil B.

BMC Genomics. 2013 Nov 21;14:814. doi: 10.1186/1471-2164-14-814.

10.

Use of synteny to identify candidate genes underlying QTL controlling stomatal traits in faba bean (Vicia faba L.).

Khazaei H, O'Sullivan DM, Sillanpää MJ, Stoddard FL.

Theor Appl Genet. 2014 Nov;127(11):2371-85. doi: 10.1007/s00122-014-2383-y. Epub 2014 Sep 4.

PMID:
25186169
11.

Fine mapping links the FTa1 flowering time regulator to the dominant spring1 locus in Medicago.

Yeoh CC, Balcerowicz M, Zhang L, Jaudal M, Brocard L, Ratet P, Putterill J.

PLoS One. 2013;8(1):e53467. doi: 10.1371/journal.pone.0053467. Epub 2013 Jan 7.

12.

Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula.

Julier B, Huguet T, Chardon F, Ayadi R, Pierre JB, Prosperi JM, Barre P, Huyghe C.

Theor Appl Genet. 2007 May;114(8):1391-406. Epub 2007 Mar 21.

PMID:
17375280
13.

Flowering time QTL in natural populations of Arabidopsis thaliana and implications for their adaptive value.

Dittmar EL, Oakley CG, Ågren J, Schemske DW.

Mol Ecol. 2014 Sep;23(17):4291-303. doi: 10.1111/mec.12857. Epub 2014 Aug 12.

PMID:
25039363
14.

MtVRN2 is a Polycomb VRN2-like gene which represses the transition to flowering in the model legume Medicago truncatula.

Jaudal M, Zhang L, Che C, Hurley DG, Thomson G, Wen J, Mysore KS, Putterill J.

Plant J. 2016 Apr;86(2):145-60. doi: 10.1111/tpj.13156.

15.

Retroelement insertions at the Medicago FTa1 locus in spring mutants eliminate vernalisation but not long-day requirements for early flowering.

Jaudal M, Yeoh CC, Zhang L, Stockum C, Mysore KS, Ratet P, Putterill J.

Plant J. 2013 Nov;76(4):580-91. doi: 10.1111/tpj.12315. Epub 2013 Oct 5.

16.

Soil environment is a key driver of adaptation in Medicago truncatula: new insights from landscape genomics.

Guerrero J, Andrello M, Burgarella C, Manel S.

New Phytol. 2018 Jul;219(1):378-390. doi: 10.1111/nph.15171. Epub 2018 Apr 26.

PMID:
29696659
17.

Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L.

Keller SR, Levsen N, Olson MS, Tiffin P.

Mol Biol Evol. 2012 Oct;29(10):3143-52. Epub 2012 Apr 18.

PMID:
22513286
18.

Association mapping of local climate-sensitive quantitative trait loci in Arabidopsis thaliana.

Li Y, Huang Y, Bergelson J, Nordborg M, Borevitz JO.

Proc Natl Acad Sci U S A. 2010 Dec 7;107(49):21199-204. doi: 10.1073/pnas.1007431107. Epub 2010 Nov 15.

19.

Functional Genomics and Flowering Time in Medicago truncatula: An Overview.

Weller JL, Macknight RC.

Methods Mol Biol. 2018;1822:261-271. doi: 10.1007/978-1-4939-8633-0_17. Review.

PMID:
30043309
20.

Adaptation of maize to temperate climates: mid-density genome-wide association genetics and diversity patterns reveal key genomic regions, with a major contribution of the Vgt2 (ZCN8) locus.

Bouchet S, Servin B, Bertin P, Madur D, Combes V, Dumas F, Brunel D, Laborde J, Charcosset A, Nicolas S.

PLoS One. 2013 Aug 30;8(8):e71377. doi: 10.1371/journal.pone.0071377. eCollection 2013.

Supplemental Content

Support Center