Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells.

Sadtler K, Estrellas K, Allen BW, Wolf MT, Fan H, Tam AJ, Patel CH, Luber BS, Wang H, Wagner KR, Powell JD, Housseau F, Pardoll DM, Elisseeff JH.

Science. 2016 Apr 15;352(6283):366-70. doi: 10.1126/science.aad9272.

2.

Key players in the immune response to biomaterial scaffolds for regenerative medicine.

Chung L, Maestas DR Jr, Housseau F, Elisseeff JH.

Adv Drug Deliv Rev. 2017 May 15;114:184-192. doi: 10.1016/j.addr.2017.07.006. Epub 2017 Jul 13. Review.

PMID:
28712923
3.

TISSUE REGENERATION. A scaffold immune microenvironment.

Badylak SF.

Science. 2016 Apr 15;352(6283):298. doi: 10.1126/science.aaf7587. No abstract available.

PMID:
27081059
4.

The Scaffold Immune Microenvironment: Biomaterial-Mediated Immune Polarization in Traumatic and Nontraumatic Applications<sup/>.

Sadtler K, Allen BW, Estrellas K, Housseau F, Pardoll DM, Elisseeff JH.

Tissue Eng Part A. 2017 Oct;23(19-20):1044-1053. doi: 10.1089/ten.TEA.2016.0304. Epub 2016 Nov 9.

5.

Promoting tissue regeneration by modulating the immune system.

Julier Z, Park AJ, Briquez PS, Martino MM.

Acta Biomater. 2017 Apr 15;53:13-28. doi: 10.1016/j.actbio.2017.01.056. Epub 2017 Jan 22. Review.

6.

Porcine Ischemic Wound-Healing Model for Preclinical Testing of Degradable Biomaterials.

Patil P, Martin JR, Sarett SM, Pollins AC, Cardwell NL, Davidson JM, Guelcher SA, Nanney LB, Duvall CL.

Tissue Eng Part C Methods. 2017 Nov;23(11):754-762. doi: 10.1089/ten.TEC.2017.0202. Epub 2017 Sep 29.

7.

Monocytes and macrophages in tissue repair: Implications for immunoregenerative biomaterial design.

Ogle ME, Segar CE, Sridhar S, Botchwey EA.

Exp Biol Med (Maywood). 2016 May;241(10):1084-97. doi: 10.1177/1535370216650293. Review.

8.

Proteomic composition and immunomodulatory properties of urinary bladder matrix scaffolds in homeostasis and injury.

Sadtler K, Sommerfeld SD, Wolf MT, Wang X, Majumdar S, Chung L, Kelkar DS, Pandey A, Elisseeff JH.

Semin Immunol. 2017 Feb;29:14-23. doi: 10.1016/j.smim.2017.05.002. Epub 2017 Jun 2. Review.

PMID:
28583764
9.

ADM Scaffolds Generate a Pro-regenerative Microenvironment During Full-Thickness Cutaneous Wound Healing Through M2 Macrophage Polarization via Lamtor1.

He C, Yang Z, Jin Y, Qi X, Chu J, Deng X.

Front Physiol. 2018 Jun 4;9:657. doi: 10.3389/fphys.2018.00657. eCollection 2018.

10.

Minimally invasive approach to the repair of injured skeletal muscle with a shape-memory scaffold.

Wang L, Cao L, Shansky J, Wang Z, Mooney D, Vandenburgh H.

Mol Ther. 2014 Aug;22(8):1441-1449. doi: 10.1038/mt.2014.78. Epub 2014 Apr 28.

11.

Chitin scaffolds in tissue engineering.

Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T, Tamura H.

Int J Mol Sci. 2011;12(3):1876-87. doi: 10.3390/ijms12031876. Epub 2011 Mar 15. Review.

12.

Effects of small intestinal submucosa (SIS) on the murine innate immune microenvironment induced by heat-killed Staphylococcus aureus.

Roy Chowdhury R, Aachoui Y, Ghosh SK.

PLoS One. 2012;7(11):e48724. doi: 10.1371/journal.pone.0048724. Epub 2012 Nov 26.

13.

Substrate modulus of 3D-printed scaffolds regulates the regenerative response in subcutaneous implants through the macrophage phenotype and Wnt signaling.

Guo R, Merkel AR, Sterling JA, Davidson JM, Guelcher SA.

Biomaterials. 2015 Dec;73:85-95. doi: 10.1016/j.biomaterials.2015.09.005. Epub 2015 Sep 11.

14.

Immunology Guides Skeletal Muscle Regeneration.

Sass FA, Fuchs M, Pumberger M, Geissler S, Duda GN, Perka C, Schmidt-Bleek K.

Int J Mol Sci. 2018 Mar 13;19(3). pii: E835. doi: 10.3390/ijms19030835. Review.

15.

In Vitro Model of Macrophage-Biomaterial Interactions.

Witherel CE, Graney PL, Spiller KL.

Methods Mol Biol. 2018;1758:161-176. doi: 10.1007/978-1-4939-7741-3_13.

PMID:
29679330
16.

This paper is the winner of an SFB Award in the Hospital Intern, Residency category: Peptide biomaterials raising adaptive immune responses in wound healing contexts.

Vigneswaran Y, Han H, De Loera R, Wen Y, Zhang X, Sun T, Mora-Solano C, Collier JH.

J Biomed Mater Res A. 2016 Aug;104(8):1853-62. doi: 10.1002/jbm.a.35767. Epub 2016 May 26.

17.

Biomaterials based strategies for skeletal muscle tissue engineering: existing technologies and future trends.

Qazi TH, Mooney DJ, Pumberger M, Geissler S, Duda GN.

Biomaterials. 2015;53:502-21. doi: 10.1016/j.biomaterials.2015.02.110. Epub 2015 Mar 21. Review.

PMID:
25890747
18.

An acellular biologic scaffold does not regenerate appreciable de novo muscle tissue in rat models of volumetric muscle loss injury.

Aurora A, Roe JL, Corona BT, Walters TJ.

Biomaterials. 2015 Oct;67:393-407. doi: 10.1016/j.biomaterials.2015.07.040. Epub 2015 Jul 23.

PMID:
26256250
19.

Biomimetic scaffolds for regeneration of volumetric muscle loss in skeletal muscle injuries.

Grasman JM, Zayas MJ, Page RL, Pins GD.

Acta Biomater. 2015 Oct;25:2-15. doi: 10.1016/j.actbio.2015.07.038. Epub 2015 Jul 26. Review.

20.

Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury.

Corona BT, Ward CL, Baker HB, Walters TJ, Christ GJ.

Tissue Eng Part A. 2014 Feb;20(3-4):705-15. doi: 10.1089/ten.TEA.2012.0761. Epub 2013 Dec 19.

Supplemental Content

Support Center