Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 187

1.

Bacillus anthracis ω-amino acid:pyruvate transaminase employs a different mechanism for dual substrate recognition than other amine transaminases.

Steffen-Munsberg F, Matzel P, Sowa MA, Berglund P, Bornscheuer UT, Höhne M.

Appl Microbiol Biotechnol. 2016 May;100(10):4511-21. doi: 10.1007/s00253-015-7275-9. Epub 2016 Jan 21.

PMID:
26795966
2.

Identification of novel thermostable taurine-pyruvate transaminase from Geobacillus thermodenitrificans for chiral amine synthesis.

Chen Y, Yi D, Jiang S, Wei D.

Appl Microbiol Biotechnol. 2016 Apr;100(7):3101-11. doi: 10.1007/s00253-015-7129-5. Epub 2015 Nov 18.

PMID:
26577674
3.

Identification, expression and characterization of an R-ω-transaminase from Capronia semiimmersa.

Iglesias C, Panizza P, Rodriguez Giordano S.

Appl Microbiol Biotechnol. 2017 Jul;101(14):5677-5687. doi: 10.1007/s00253-017-8309-2. Epub 2017 May 17.

PMID:
28516206
4.

Purification, characterization, and molecular cloning of a novel amine:pyruvate transaminase from Vibrio fluvialis JS17.

Shin JS, Yun H, Jang JW, Park I, Kim BG.

Appl Microbiol Biotechnol. 2003 Jun;61(5-6):463-71. Epub 2003 Apr 10.

PMID:
12687298
5.

Structural Basis of the Substrate Range and Enantioselectivity of Two (S)-Selective ω-Transaminases.

van Oosterwijk N, Willies S, Hekelaar J, Terwisscha van Scheltinga AC, Turner NJ, Dijkstra BW.

Biochemistry. 2016 Aug 9;55(31):4422-31. doi: 10.1021/acs.biochem.6b00370. Epub 2016 Jul 29.

PMID:
27428867
6.

Diaminopelargonic acid transaminase from Psychrobacter cryohalolentis is active towards (S)-(-)-1-phenylethylamine, aldehydes and α-diketones.

Bezsudnova EY, Stekhanova TN, Popinako AV, Rakitina TV, Nikolaeva AY, Boyko KM, Popov VO.

Appl Microbiol Biotechnol. 2018 Nov;102(22):9621-9633. doi: 10.1007/s00253-018-9310-0. Epub 2018 Sep 3.

PMID:
30178202
7.

Crystal structure of an (R)-selective ω-transaminase from Aspergillus terreus.

Łyskowski A, Gruber C, Steinkellner G, Schürmann M, Schwab H, Gruber K, Steiner K.

PLoS One. 2014 Jan 30;9(1):e87350. doi: 10.1371/journal.pone.0087350. eCollection 2014.

8.

Structural and biochemical characterization of the dual substrate recognition of the (R)-selective amine transaminase from Aspergillus fumigatus.

Skalden L, Thomsen M, Höhne M, Bornscheuer UT, Hinrichs W.

FEBS J. 2015 Jan;282(2):407-15. doi: 10.1111/febs.13149. Epub 2014 Dec 2.

10.

Molecular determinants for substrate selectivity of ω-transaminases.

Park ES, Kim M, Shin JS.

Appl Microbiol Biotechnol. 2012 Mar;93(6):2425-35. doi: 10.1007/s00253-011-3584-9. Epub 2011 Oct 9.

PMID:
21983703
11.

Conductometric method for the rapid characterization of the substrate specificity of amine-transaminases.

Schätzle S, Höhne M, Robins K, Bornscheuer UT.

Anal Chem. 2010 Mar 1;82(5):2082-6. doi: 10.1021/ac9028483.

PMID:
20148590
12.

The substrate specificity, enantioselectivity and structure of the (R)-selective amine : pyruvate transaminase from Nectria haematococca.

Sayer C, Martinez-Torres RJ, Richter N, Isupov MN, Hailes HC, Littlechild JA, Ward JM.

FEBS J. 2014 May;281(9):2240-53. doi: 10.1111/febs.12778. Epub 2014 Apr 7.

13.

Improvement of whole-cell transamination with Saccharomyces cerevisiae using metabolic engineering and cell pre-adaptation.

Weber N, Gorwa-Grauslund M, Carlquist M.

Microb Cell Fact. 2017 Jan 3;16(1):3. doi: 10.1186/s12934-016-0615-3.

14.
15.

Active site model of (R)-selective ω-transaminase and its application to the production of D-amino acids.

Park ES, Dong JY, Shin JS.

Appl Microbiol Biotechnol. 2014 Jan;98(2):651-60. doi: 10.1007/s00253-013-4846-5. Epub 2013 Apr 11.

PMID:
23576035
16.

[Deletion of a dynamic surface loop improves thermostability of (R)-selective amine transaminase from Aspergillus terreus].

Xie D, Lv C, Fang H, Yang W, Hu S, Zhao W, Huang J, Mei L.

Sheng Wu Gong Cheng Xue Bao. 2017 Dec 25;33(12):1923-1933. doi: 10.13345/j.cjb.170279. Chinese.

17.

Crystal structures of the Chromobacterium violaceumω-transaminase reveal major structural rearrangements upon binding of coenzyme PLP.

Humble MS, Cassimjee KE, Håkansson M, Kimbung YR, Walse B, Abedi V, Federsel HJ, Berglund P, Logan DT.

FEBS J. 2012 Mar;279(5):779-92. doi: 10.1111/j.1742-4658.2012.08468.x. Epub 2012 Jan 23.

18.

Quantum Chemical Study of Dual-Substrate Recognition in ω-Transaminase.

Manta B, Cassimjee KE, Himo F.

ACS Omega. 2017 Mar 31;2(3):890-898. doi: 10.1021/acsomega.6b00376. Epub 2017 Mar 14.

19.

A β-Alanine Catabolism Pathway Containing a Highly Promiscuous ω-Transaminase in the 12-Aminododecanate-Degrading Pseudomonas sp. Strain AAC.

Wilding M, Peat TS, Newman J, Scott C.

Appl Environ Microbiol. 2016 Jun 13;82(13):3846-3856. doi: 10.1128/AEM.00665-16. Print 2016 Jul 1.

20.

Active-Site Engineering of ω-Transaminase for Production of Unnatural Amino Acids Carrying a Side Chain Bulkier than an Ethyl Substituent.

Han SW, Park ES, Dong JY, Shin JS.

Appl Environ Microbiol. 2015 Oct;81(20):6994-7002. doi: 10.1128/AEM.01533-15. Epub 2015 Jul 31.

Supplemental Content

Support Center