Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 218

1.

Effect of ethylene treatment on phytochemical and ethylene-related gene expression during ripening in strawberry fruit Fragaria x ananassa cv. Camino Real.

Lopes PZ, Fornazzari IM, Almeida AT, Galvão CW, Etto RM, Inaba J, Ayub RA.

Genet Mol Res. 2015 Dec 7;14(4):16113-25. doi: 10.4238/2015.December.7.23.

2.

Methyl jasmonate treatment induces changes in fruit ripening by modifying the expression of several ripening genes in Fragaria chiloensis fruit.

Concha CM, Figueroa NE, Poblete LA, Oñate FA, Schwab W, Figueroa CR.

Plant Physiol Biochem. 2013 Sep;70:433-44. doi: 10.1016/j.plaphy.2013.06.008. Epub 2013 Jun 21.

PMID:
23835361
3.

Extensive transcriptomic studies on the roles played by abscisic acid and auxins in the development and ripening of strawberry fruits.

Medina-Puche L, Blanco-Portales R, Molina-Hidalgo FJ, Cumplido-Laso G, García-Caparrós N, Moyano-Cañete E, Caballero-Repullo JL, Muñoz-Blanco J, Rodríguez-Franco A.

Funct Integr Genomics. 2016 Nov;16(6):671-692. Epub 2016 Sep 10.

PMID:
27614432
4.

Sucrose functions as a signal involved in the regulation of strawberry fruit development and ripening.

Jia H, Wang Y, Sun M, Li B, Han Y, Zhao Y, Li X, Ding N, Li C, Ji W, Jia W.

New Phytol. 2013 Apr;198(2):453-65. doi: 10.1111/nph.12176. Epub 2013 Feb 21.

5.

MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria x ananassa fruits.

Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, Ring L, Rodríguez-Franco A, Caballero JL, Schwab W, Muñoz-Blanco J, Blanco-Portales R.

J Exp Bot. 2014 Feb;65(2):401-17. doi: 10.1093/jxb/ert377. Epub 2013 Nov 25.

PMID:
24277278
6.

Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and abscisic acid.

Chen J, Mao L, Lu W, Ying T, Luo Z.

Planta. 2016 Jan;243(1):183-97. doi: 10.1007/s00425-015-2402-5. Epub 2015 Sep 15.

PMID:
26373937
7.

Novel insights of ethylene role in strawberry cell wall metabolism.

Villarreal NM, Marina M, Nardi CF, Civello PM, Martínez GA.

Plant Sci. 2016 Nov;252:1-11. doi: 10.1016/j.plantsci.2016.06.018. Epub 2016 Jun 27.

PMID:
27717444
8.

Involvement of three annexin genes in the ripening of strawberry fruit regulated by phytohormone and calcium signal transduction.

Chen J, Mao L, Mi H, Lu W, Ying T, Luo Z.

Plant Cell Rep. 2016 Apr;35(4):733-43. doi: 10.1007/s00299-015-1915-5. Epub 2016 Jan 2.

PMID:
26724928
9.

Functional characterization of FaNIP1;1 gene, a ripening-related and receptacle-specific aquaporin in strawberry fruit.

Molina-Hidalgo FJ, Medina-Puche L, Gelis S, Ramos J, Sabir F, Soveral G, Prista C, Iglesias-Fernández R, Caballero JL, Muñoz-Blanco J, Blanco-Portales R.

Plant Sci. 2015 Sep;238:198-211. doi: 10.1016/j.plantsci.2015.06.013. Epub 2015 Jun 20.

PMID:
26259188
10.

A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue.

Seymour GB, Ryder CD, Cevik V, Hammond JP, Popovich A, King GJ, Vrebalov J, Giovannoni JJ, Manning K.

J Exp Bot. 2011 Jan;62(3):1179-88. doi: 10.1093/jxb/erq360. Epub 2010 Nov 29.

11.

Polyamines Regulate Strawberry Fruit Ripening by Abscisic Acid, Auxin, and Ethylene.

Guo J, Wang S, Yu X, Dong R, Li Y, Mei X, Shen Y.

Plant Physiol. 2018 May;177(1):339-351. doi: 10.1104/pp.18.00245. Epub 2018 Mar 9.

12.

Ethylene is involved in strawberry fruit ripening in an organ-specific manner.

Merchante C, Vallarino JG, Osorio S, Aragüez I, Villarreal N, Ariza MT, Martínez GA, Medina-Escobar N, Civello MP, Fernie AR, Botella MA, Valpuesta V.

J Exp Bot. 2013 Nov;64(14):4421-39. doi: 10.1093/jxb/ert257. Epub 2013 Oct 5.

13.

An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles.

Medina-Puche L, Molina-Hidalgo FJ, Boersma M, Schuurink RC, López-Vidriero I, Solano R, Franco-Zorrilla JM, Caballero JL, Blanco-Portales R, Muñoz-Blanco J.

Plant Physiol. 2015 Jun;168(2):598-614. doi: 10.1104/pp.114.252908. Epub 2015 Apr 30.

14.

Expression Profiling of Strawberry Allergen Fra a during Fruit Ripening Controlled by Exogenous Auxin.

Ishibashi M, Yoshikawa H, Uno Y.

Int J Mol Sci. 2017 Jun 2;18(6). pii: E1186. doi: 10.3390/ijms18061186.

16.

SUCROSE NONFERMENTING1-RELATED PROTEIN KINASE2.6, an ortholog of OPEN STOMATA1, is a negative regulator of strawberry fruit development and ripening.

Han Y, Dang R, Li J, Jiang J, Zhang N, Jia M, Wei L, Li Z, Li B, Jia W.

Plant Physiol. 2015 Mar;167(3):915-30. doi: 10.1104/pp.114.251314. Epub 2015 Jan 21.

17.

Antisense down-regulation of the strawberry β-galactosidase gene FaβGal4 increases cell wall galactose levels and reduces fruit softening.

Paniagua C, Blanco-Portales R, Barceló-Muñoz M, García-Gago JA, Waldron KW, Quesada MA, Muñoz-Blanco J, Mercado JA.

J Exp Bot. 2016 Feb;67(3):619-31. doi: 10.1093/jxb/erv462. Epub 2015 Nov 19.

18.

Altered sensitivity to ethylene in 'Tardivo', a late-ripening mutant of Clementine mandarin.

Alós E, Distefano G, Rodrigo MJ, Gentile A, Zacarías L.

Physiol Plant. 2014 Aug;151(4):507-21. doi: 10.1111/ppl.12133. Epub 2013 Dec 29.

PMID:
24372483
19.

Genome-wide analysis of the NAC transcription factor family and their expression during the development and ripening of the Fragaria × ananassa fruits.

Moyano E, Martínez-Rivas FJ, Blanco-Portales R, Molina-Hidalgo FJ, Ric-Varas P, Matas-Arroyo AJ, Caballero JL, Muñoz-Blanco J, Rodríguez-Franco A.

PLoS One. 2018 May 3;13(5):e0196953. doi: 10.1371/journal.pone.0196953. eCollection 2018.

20.

FaGAST2, a strawberry ripening-related gene, acts together with FaGAST1 to determine cell size of the fruit receptacle.

Moyano-Cañete E, Bellido ML, García-Caparrós N, Medina-Puche L, Amil-Ruiz F, González-Reyes JA, Caballero JL, Muñoz-Blanco J, Blanco-Portales R.

Plant Cell Physiol. 2013 Feb;54(2):218-36. doi: 10.1093/pcp/pcs167. Epub 2012 Dec 11.

PMID:
23231876

Supplemental Content

Support Center