Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 95

1.

Pronounced species divergence in corticospinal tract reorganization and functional recovery after lateralized spinal cord injury favors primates.

Friedli L, Rosenzweig ES, Barraud Q, Schubert M, Dominici N, Awai L, Nielson JL, Musienko P, Nout-Lomas Y, Zhong H, Zdunowski S, Roy RR, Strand SC, van den Brand R, Havton LA, Beattie MS, Bresnahan JC, Bézard E, Bloch J, Edgerton VR, Ferguson AR, Curt A, Tuszynski MH, Courtine G.

Sci Transl Med. 2015 Aug 26;7(302):302ra134. doi: 10.1126/scitranslmed.aac5811.

2.

Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats.

Hurd C, Weishaupt N, Fouad K.

Exp Neurol. 2013 Sep;247:605-14. doi: 10.1016/j.expneurol.2013.02.013. Epub 2013 Mar 5.

PMID:
23470552
3.

Re-Establishment of Cortical Motor Output Maps and Spontaneous Functional Recovery via Spared Dorsolaterally Projecting Corticospinal Neurons after Dorsal Column Spinal Cord Injury in Adult Mice.

Hilton BJ, Anenberg E, Harrison TC, Boyd JD, Murphy TH, Tetzlaff W.

J Neurosci. 2016 Apr 6;36(14):4080-92. doi: 10.1523/JNEUROSCI.3386-15.2016.

4.

Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits.

Jiang YQ, Zaaimi B, Martin JH.

J Neurosci. 2016 Jan 6;36(1):193-203. doi: 10.1523/JNEUROSCI.3441-15.2016.

5.

Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury.

Weishaupt N, Hurd C, Wei DZ, Fouad K.

Exp Neurol. 2013 Sep;247:241-9. doi: 10.1016/j.expneurol.2013.05.003. Epub 2013 May 17.

PMID:
23684634
6.

Corticospinal reorganization after spinal cord injury.

Oudega M, Perez MA.

J Physiol. 2012 Aug 15;590(16):3647-63. doi: 10.1113/jphysiol.2012.233189. Epub 2012 May 14. Review.

7.

Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury.

Weidner N, Ner A, Salimi N, Tuszynski MH.

Proc Natl Acad Sci U S A. 2001 Mar 13;98(6):3513-8.

8.

Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury.

Rosenzweig ES, Courtine G, Jindrich DL, Brock JH, Ferguson AR, Strand SC, Nout YS, Roy RR, Miller DM, Beattie MS, Havton LA, Bresnahan JC, Edgerton VR, Tuszynski MH.

Nat Neurosci. 2010 Dec;13(12):1505-10. doi: 10.1038/nn.2691. Epub 2010 Nov 14.

9.
10.

A Single Bolus of Docosahexaenoic Acid Promotes Neuroplastic Changes in the Innervation of Spinal Cord Interneurons and Motor Neurons and Improves Functional Recovery after Spinal Cord Injury.

Liu ZH, Yip PK, Adams L, Davies M, Lee JW, Michael GJ, Priestley JV, Michael-Titus AT.

J Neurosci. 2015 Sep 16;35(37):12733-52. doi: 10.1523/JNEUROSCI.0605-15.2015.

11.

Localization of the corticospinal tract within the porcine spinal cord: Implications for experimental modeling of traumatic spinal cord injury.

Leonard AV, Menendez JY, Pat BM, Hadley MN, Floyd CL.

Neurosci Lett. 2017 May 1;648:1-7. doi: 10.1016/j.neulet.2017.03.020. Epub 2017 Mar 16.

12.

Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.

Song W, Amer A, Ryan D, Martin JH.

Exp Neurol. 2016 Mar;277:46-57. doi: 10.1016/j.expneurol.2015.12.008. Epub 2015 Dec 18.

13.

Assessing forelimb function after unilateral cervical spinal cord injury: novel forelimb tasks predict lesion severity and recovery.

Khaing ZZ, Geissler SA, Jiang S, Milman BD, Aguilar SV, Schmidt CE, Schallert T.

J Neurotrauma. 2012 Feb 10;29(3):488-98. doi: 10.1089/neu.2011.2106. Epub 2012 Jan 16.

PMID:
22022897
14.

Motor deficits and recovery in rats with unilateral spinal cord hemisection mimic the Brown-Sequard syndrome.

Filli L, Zörner B, Weinmann O, Schwab ME.

Brain. 2011 Aug;134(Pt 8):2261-73. doi: 10.1093/brain/awr167. Epub 2011 Jul 13.

15.

Animal models of neurologic disorders: a nonhuman primate model of spinal cord injury.

Nout YS, Rosenzweig ES, Brock JH, Strand SC, Moseanko R, Hawbecker S, Zdunowski S, Nielson JL, Roy RR, Courtine G, Ferguson AR, Edgerton VR, Beattie MS, Bresnahan JC, Tuszynski MH.

Neurotherapeutics. 2012 Apr;9(2):380-92. doi: 10.1007/s13311-012-0114-0. Review.

16.

Assessment of transmission in specific descending pathways in relation to gait and balance following spinal cord injury.

Barthélemy D, Willerslev-Olsen M, Lundell H, Biering-Sørensen F, Nielsen JB.

Prog Brain Res. 2015;218:79-101. doi: 10.1016/bs.pbr.2014.12.012. Epub 2015 Mar 29.

PMID:
25890133
17.

Locomotor recovery after spinal cord hemisection/contusion injures in bonnet monkeys: footprint testing--a minireview.

Rangasamy SB.

Synapse. 2013 Jul;67(7):427-53. doi: 10.1002/syn.21645. Epub 2013 Mar 19. Review.

PMID:
23401170
18.

Chasing central nervous system plasticity: the brainstem's contribution to locomotor recovery in rats with spinal cord injury.

Zörner B, Bachmann LC, Filli L, Kapitza S, Gullo M, Bolliger M, Starkey ML, Röthlisberger M, Gonzenbach RR, Schwab ME.

Brain. 2014 Jun;137(Pt 6):1716-32. doi: 10.1093/brain/awu078. Epub 2014 Apr 15.

PMID:
24736305
19.

Bridging the gap: a reticulo-propriospinal detour bypassing an incomplete spinal cord injury.

Filli L, Engmann AK, Zörner B, Weinmann O, Moraitis T, Gullo M, Kasper H, Schneider R, Schwab ME.

J Neurosci. 2014 Oct 1;34(40):13399-410. doi: 10.1523/JNEUROSCI.0701-14.2014.

20.

A unilateral section of the corticospinal tract at cervical level in primate does not lead to measurable cell loss in motor cortex.

Wannier T, Schmidlin E, Bloch J, Rouiller EM.

J Neurotrauma. 2005 Jun;22(6):703-17.

PMID:
15941378

Supplemental Content

Support Center