Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 115

1.

A conserved Polϵ binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1.

García-Rodríguez LJ, De Piccoli G, Marchesi V, Jones RC, Edmondson RD, Labib K.

Nucleic Acids Res. 2015 Oct 15;43(18):8830-8. doi: 10.1093/nar/gkv799. Epub 2015 Aug 6.

2.

Stable interaction between the human proliferating cell nuclear antigen loader complex Ctf18-replication factor C (RFC) and DNA polymerase {epsilon} is mediated by the cohesion-specific subunits, Ctf18, Dcc1, and Ctf8.

Murakami T, Takano R, Takeo S, Taniguchi R, Ogawa K, Ohashi E, Tsurimoto T.

J Biol Chem. 2010 Nov 5;285(45):34608-15. doi: 10.1074/jbc.M110.166710. Epub 2010 Sep 7.

3.

Structural Basis for the Recruitment of Ctf18-RFC to the Replisome.

Grabarczyk DB, Silkenat S, Kisker C.

Structure. 2018 Jan 2;26(1):137-144.e3. doi: 10.1016/j.str.2017.11.004. Epub 2017 Dec 7.

4.

Conserved interaction of Ctf18-RFC with DNA polymerase ε is critical for maintenance of genome stability in Saccharomyces cerevisiae.

Okimoto H, Tanaka S, Araki H, Ohashi E, Tsurimoto T.

Genes Cells. 2016 May;21(5):482-91. doi: 10.1111/gtc.12356. Epub 2016 Mar 14.

5.

Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response.

Crabbé L, Thomas A, Pantesco V, De Vos J, Pasero P, Lengronne A.

Nat Struct Mol Biol. 2010 Nov;17(11):1391-7. doi: 10.1038/nsmb.1932. Epub 2010 Oct 24.

PMID:
20972444
6.

A second proliferating cell nuclear antigen loader complex, Ctf18-replication factor C, stimulates DNA polymerase eta activity.

Shiomi Y, Masutani C, Hanaoka F, Kimura H, Tsurimoto T.

J Biol Chem. 2007 Jul 20;282(29):20906-14. Epub 2007 May 31.

7.

The unstructured C-terminal tail of yeast Dpb11 (human TopBP1) protein is dispensable for DNA replication and the S phase checkpoint but required for the G2/M checkpoint.

Navadgi-Patil VM, Kumar S, Burgers PM.

J Biol Chem. 2011 Nov 25;286(47):40999-1007. doi: 10.1074/jbc.M111.283994. Epub 2011 Sep 28.

8.

New functions of Ctf18-RFC in preserving genome stability outside its role in sister chromatid cohesion.

Gellon L, Razidlo DF, Gleeson O, Verra L, Schulz D, Lahue RS, Freudenreich CH.

PLoS Genet. 2011 Feb 10;7(2):e1001298. doi: 10.1371/journal.pgen.1001298.

9.

Replisome stability at defective DNA replication forks is independent of S phase checkpoint kinases.

De Piccoli G, Katou Y, Itoh T, Nakato R, Shirahige K, Labib K.

Mol Cell. 2012 Mar 9;45(5):696-704. doi: 10.1016/j.molcel.2012.01.007. Epub 2012 Feb 9.

10.

The Ctf18 RFC-like complex positions yeast telomeres but does not specify their replication time.

Hiraga S, Robertson ED, Donaldson AD.

EMBO J. 2006 Apr 5;25(7):1505-14. Epub 2006 Mar 9.

11.
12.

The S-phase checkpoint: targeting the replication fork.

Segurado M, Tercero JA.

Biol Cell. 2009 Aug 19;101(11):617-27. doi: 10.1042/BC20090053. Review.

PMID:
19686094
13.
14.

Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations.

Cobb JA, Schleker T, Rojas V, Bjergbaek L, Tercero JA, Gasser SM.

Genes Dev. 2005 Dec 15;19(24):3055-69.

15.

Requirement of replication checkpoint protein kinases Mec1/Rad53 for postreplication repair in yeast.

Gangavarapu V, Santa Maria SR, Prakash S, Prakash L.

MBio. 2011 May 17;2(3):e00079-11. doi: 10.1128/mBio.00079-11. Print 2011.

16.

Quantitative proteomic analysis of chromatin reveals that Ctf18 acts in the DNA replication checkpoint.

Kubota T, Hiraga S, Yamada K, Lamond AI, Donaldson AD.

Mol Cell Proteomics. 2011 Jul;10(7):M110.005561. doi: 10.1074/mcp.M110.005561. Epub 2011 Apr 19.

17.

G(1)/S and G(2)/M cyclin-dependent kinase activities commit cells to death in the absence of the S-phase checkpoint.

Manfrini N, Gobbini E, Baldo V, Trovesi C, Lucchini G, Longhese MP.

Mol Cell Biol. 2012 Dec;32(24):4971-85. doi: 10.1128/MCB.00956-12. Epub 2012 Oct 8.

18.

Structural studies of RFCCtf18 reveal a novel chromatin recruitment role for Dcc1.

Wade BO, Liu HW, Samora CP, Uhlmann F, Singleton MR.

EMBO Rep. 2017 Apr;18(4):558-568. doi: 10.15252/embr.201642825. Epub 2017 Feb 10.

19.

Histone H3 K56 hyperacetylation perturbs replisomes and causes DNA damage.

Celic I, Verreault A, Boeke JD.

Genetics. 2008 Aug;179(4):1769-84. doi: 10.1534/genetics.108.088914. Epub 2008 Jun 24.

20.

Eukaryotic replisome components cooperate to process histones during chromosome replication.

Foltman M, Evrin C, De Piccoli G, Jones RC, Edmondson RD, Katou Y, Nakato R, Shirahige K, Labib K.

Cell Rep. 2013 Mar 28;3(3):892-904. doi: 10.1016/j.celrep.2013.02.028. Epub 2013 Mar 14.

Supplemental Content

Support Center