Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 161

1.

Autophagy supports biomass production and nitrogen use efficiency at the vegetative stage in rice.

Wada S, Hayashida Y, Izumi M, Kurusu T, Hanamata S, Kanno K, Kojima S, Yamaya T, Kuchitsu K, Makino A, Ishida H.

Plant Physiol. 2015 May;168(1):60-73. doi: 10.1104/pp.15.00242. Epub 2015 Mar 18.

2.

Establishment of monitoring methods for autophagy in rice reveals autophagic recycling of chloroplasts and root plastids during energy limitation.

Izumi M, Hidema J, Wada S, Kondo E, Kurusu T, Kuchitsu K, Makino A, Ishida H.

Plant Physiol. 2015 Apr;167(4):1307-20. doi: 10.1104/pp.114.254078. Epub 2015 Feb 25.

3.
4.

Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis.

Guiboileau A, Yoshimoto K, Soulay F, Bataillé MP, Avice JC, Masclaux-Daubresse C.

New Phytol. 2012 May;194(3):732-40. doi: 10.1111/j.1469-8137.2012.04084.x. Epub 2012 Mar 9.

5.

From Arabidopsis to cereal crops: Conservation of chloroplast protein degradation by autophagy indicates its fundamental role in plant productivity.

Izumi M, Hidema J, Ishida H.

Plant Signal Behav. 2015;10(11):e1101199. doi: 10.1080/15592324.2015.1101199.

6.

Changes in the synthesis of rubisco in rice leaves in relation to senescence and N influx.

Imai K, Suzuki Y, Mae T, Makino A.

Ann Bot. 2008 Jan;101(1):135-44. Epub 2007 Oct 26.

7.

The autophagic degradation of chloroplasts via rubisco-containing bodies is specifically linked to leaf carbon status but not nitrogen status in Arabidopsis.

Izumi M, Wada S, Makino A, Ishida H.

Plant Physiol. 2010 Nov;154(3):1196-209. doi: 10.1104/pp.110.158519. Epub 2010 Aug 31.

8.

Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition.

Diaz C, Lemaître T, Christ A, Azzopardi M, Kato Y, Sato F, Morot-Gaudry JF, Le Dily F, Masclaux-Daubresse C.

Plant Physiol. 2008 Jul;147(3):1437-49. doi: 10.1104/pp.108.119040. Epub 2008 May 8.

9.

Whole-plant growth and N utilization in transgenic rice plants with increased or decreased Rubisco content under different CO2 partial pressures.

Sudo E, Suzuki Y, Makino A.

Plant Cell Physiol. 2014 Nov;55(11):1905-11. doi: 10.1093/pcp/pcu119. Epub 2014 Sep 16. Erratum in: Plant Cell Physiol. 2015 Jan;56(1):175.

PMID:
25231963
10.

Photosynthesis, plant growth and N allocation in transgenic rice plants with decreased Rubisco under CO2 enrichment.

Makino A, Nakano H, Mae T, Shimada T, Yamamoto N.

J Exp Bot. 2000 Feb;51 Spec No:383-9. Review.

PMID:
10938846
11.

Roles of autophagy in chloroplast recycling.

Ishida H, Izumi M, Wada S, Makino A.

Biochim Biophys Acta. 2014 Apr;1837(4):512-21. doi: 10.1016/j.bbabio.2013.11.009. Epub 2013 Nov 19. Review.

13.

Are contents of Rubisco, soluble protein and nitrogen in flag leaves of rice controlled by the same genetics?

Ishimaru K, Kobayashi N, Ono K, Yano M, Ohsugi R.

J Exp Bot. 2001 Sep;52(362):1827-33.

PMID:
11520871
14.

Characterization and fine-mapping of a novel premature leaf senescence mutant yellow leaf and dwarf 1 in rice.

Deng L, Qin P, Liu Z, Wang G, Chen W, Tong J, Xiao L, Tu B, Sun Y, Yan W, He H, Tan J, Chen X, Wang Y, Li S, Ma B.

Plant Physiol Biochem. 2017 Feb;111:50-58. doi: 10.1016/j.plaphy.2016.11.012. Epub 2016 Nov 22.

PMID:
27912109
15.

Evidence for contribution of autophagy to rubisco degradation during leaf senescence in Arabidopsis thaliana.

Ono Y, Wada S, Izumi M, Makino A, Ishida H.

Plant Cell Environ. 2013 Jun;36(6):1147-59. doi: 10.1111/pce.12049. Epub 2013 Jan 7.

16.

The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice.

Zeng DD, Qin R, Li M, Alamin M, Jin XL, Liu Y, Shi CH.

Mol Genet Genomics. 2017 Apr;292(2):385-395. doi: 10.1007/s00438-016-1275-z. Epub 2016 Dec 23.

PMID:
28012016
17.

Light-saturated photosynthetic rate in high-nitrogen rice (Oryza sativa L.) leaves is related to chloroplastic CO2 concentration.

Li Y, Gao Y, Xu X, Shen Q, Guo S.

J Exp Bot. 2009;60(8):2351-60. doi: 10.1093/jxb/erp127. Epub 2009 Apr 24.

PMID:
19395387
18.

Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves.

Wada S, Ishida H, Izumi M, Yoshimoto K, Ohsumi Y, Mae T, Makino A.

Plant Physiol. 2009 Feb;149(2):885-93. doi: 10.1104/pp.108.130013. Epub 2008 Dec 12.

19.

Starch Content in Leaf Sheath Controlled by CO2-Responsive CCT Protein is a Potential Determinant of Photosynthetic Capacity in Rice.

Morita R, Inoue K, Ikeda KI, Hatanaka T, Misoo S, Fukayama H.

Plant Cell Physiol. 2016 Nov;57(11):2334-2341. Epub 2016 Aug 12.

PMID:
27519315
20.

Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of RBCS.

Suzuki Y, Miyamoto T, Yoshizawa R, Mae T, Makino A.

Plant Cell Environ. 2009 Apr;32(4):417-27. doi: 10.1111/j.1365-3040.2009.01937.x. Epub 2009 Jan 14.

Supplemental Content

Support Center