Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 119

1.

Quantitative proteomics analysis of the Arg/N-end rule pathway of targeted degradation in Arabidopsis roots.

Zhang H, Deery MJ, Gannon L, Powers SJ, Lilley KS, Theodoulou FL.

Proteomics. 2015 Jul;15(14):2447-57. doi: 10.1002/pmic.201400530. Epub 2015 Apr 17.

2.

N-terminomics reveals control of Arabidopsis seed storage proteins and proteases by the Arg/N-end rule pathway.

Zhang H, Gannon L, Hassall KL, Deery MJ, Gibbs DJ, Holdsworth MJ, van der Hoorn RAL, Lilley KS, Theodoulou FL.

New Phytol. 2018 May;218(3):1106-1126. doi: 10.1111/nph.14909. Epub 2017 Nov 23.

3.

PRT6/At5g02310 encodes an Arabidopsis ubiquitin ligase of the N-end rule pathway with arginine specificity and is not the CER3 locus.

Garzón M, Eifler K, Faust A, Scheel H, Hofmann K, Koncz C, Yephremov A, Bachmair A.

FEBS Lett. 2007 Jul 10;581(17):3189-96. Epub 2007 Jun 12.

4.

An improved workflow for quantitative N-terminal charge-based fractional diagonal chromatography (ChaFRADIC) to study proteolytic events in Arabidopsis thaliana.

Venne AS, Solari FA, Faden F, Paretti T, Dissmeyer N, Zahedi RP.

Proteomics. 2015 Jul;15(14):2458-69. doi: 10.1002/pmic.201500014.

PMID:
26010716
5.

PRT1 of Arabidopsis is a ubiquitin protein ligase of the plant N-end rule pathway with specificity for aromatic amino-terminal residues.

Stary S, Yin XJ, Potuschak T, Schlögelhofer P, Nizhynska V, Bachmair A.

Plant Physiol. 2003 Nov;133(3):1360-6. Epub 2003 Oct 9.

6.

Hypoxia response in Arabidopsis roots infected by Plasmodiophora brassicae supports the development of clubroot.

Gravot A, Richard G, Lime T, Lemarié S, Jubault M, Lariagon C, Lemoine J, Vicente J, Robert-Seilaniantz A, Holdsworth MJ, Manzanares-Dauleux MJ.

BMC Plant Biol. 2016 Nov 11;16(1):251.

7.

RGS4 and RGS5 are in vivo substrates of the N-end rule pathway.

Lee MJ, Tasaki T, Moroi K, An JY, Kimura S, Davydov IV, Kwon YT.

Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15030-5. Epub 2005 Oct 10.

8.

The greening after extended darkness1 is an N-end rule pathway mutant with high tolerance to submergence and starvation.

Riber W, Müller JT, Visser EJ, Sasidharan R, Voesenek LA, Mustroph A.

Plant Physiol. 2015 Apr;167(4):1616-29. doi: 10.1104/pp.114.253088. Epub 2015 Feb 9.

9.

The wavy growth 3 E3 ligase family controls the gravitropic response in Arabidopsis roots.

Sakai T, Mochizuki S, Haga K, Uehara Y, Suzuki A, Harada A, Wada T, Ishiguro S, Okada K.

Plant J. 2012 Apr;70(2):303-14. doi: 10.1111/j.1365-313X.2011.04870.x. Epub 2012 Jan 5.

10.

Post-Transcriptional Coordination of the Arabidopsis Iron Deficiency Response is Partially Dependent on the E3 Ligases RING DOMAIN LIGASE1 (RGLG1) and RING DOMAIN LIGASE2 (RGLG2).

Pan IC, Tsai HH, Cheng YT, Wen TN, Buckhout TJ, Schmidt W.

Mol Cell Proteomics. 2015 Oct;14(10):2733-52. doi: 10.1074/mcp.M115.048520. Epub 2015 Aug 7.

11.

The N-end rule pathway controls multiple functions during Arabidopsis shoot and leaf development.

Graciet E, Walter F, Ó'Maoiléidigh DS, Pollmann S, Meyerowitz EM, Varshavsky A, Wellmer F.

Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13618-23. doi: 10.1073/pnas.0906404106. Epub 2009 Jul 20.

12.

Plant cysteine oxidases are dioxygenases that directly enable arginyl transferase-catalysed arginylation of N-end rule targets.

White MD, Klecker M, Hopkinson RJ, Weits DA, Mueller C, Naumann C, O'Neill R, Wickens J, Yang J, Brooks-Bartlett JC, Garman EF, Grossmann TN, Dissmeyer N, Flashman E.

Nat Commun. 2017 Mar 23;8:14690. doi: 10.1038/ncomms14690.

13.

Enhanced waterlogging tolerance in barley by manipulation of expression of the N-end rule pathway E3 ligase PROTEOLYSIS6.

Mendiondo GM, Gibbs DJ, Szurman-Zubrzycka M, Korn A, Marquez J, Szarejko I, Maluszynski M, King J, Axcell B, Smart K, Corbineau F, Holdsworth MJ.

Plant Biotechnol J. 2016 Jan;14(1):40-50. doi: 10.1111/pbi.12334. Epub 2015 Feb 6.

14.

The Arabidopsis Chloroplast Stromal N-Terminome: Complexities of Amino-Terminal Protein Maturation and Stability.

Rowland E, Kim J, Bhuiyan NH, van Wijk KJ.

Plant Physiol. 2015 Nov;169(3):1881-96. doi: 10.1104/pp.15.01214. Epub 2015 Sep 14.

15.

Analyzing N-terminal Arginylation through the Use of Peptide Arrays and Degradation Assays.

Wadas B, Piatkov KI, Brower CS, Varshavsky A.

J Biol Chem. 2016 Sep 30;291(40):20976-20992. Epub 2016 Aug 10.

16.

Arabidopsis thaliana root cell wall proteomics: Increasing the proteome coverage using a combinatorial peptide ligand library and description of unexpected Hyp in peroxidase amino acid sequences.

Nguyen-Kim H, San Clemente H, Balliau T, Zivy M, Dunand C, Albenne C, Jamet E.

Proteomics. 2016 Feb;16(3):491-503. doi: 10.1002/pmic.201500129.

PMID:
26572690
17.

SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals.

Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH.

Nature. 2002 Sep 12;419(6903):167-70.

PMID:
12226665
18.

Targeted proteomics analysis of protein degradation in plant signaling on an LTQ-Orbitrap mass spectrometer.

Majovsky P, Naumann C, Lee CW, Lassowskat I, Trujillo M, Dissmeyer N, Hoehenwarter W.

J Proteome Res. 2014 Oct 3;13(10):4246-58. doi: 10.1021/pr500164j. Epub 2014 Sep 3.

PMID:
25130057
19.

Degradation of the Separase-cleaved Rec8, a Meiotic Cohesin Subunit, by the N-end Rule Pathway.

Liu YJ, Liu C, Chang Z, Wadas B, Brower CS, Song ZH, Xu ZL, Shang YL, Liu WX, Wang LN, Dong W, Varshavsky A, Hu RG, Li W.

J Biol Chem. 2016 Apr 1;291(14):7426-38. doi: 10.1074/jbc.M116.714964. Epub 2016 Feb 8.

20.

Arginyltransferase, its specificity, putative substrates, bidirectional promoter, and splicing-derived isoforms.

Hu RG, Brower CS, Wang H, Davydov IV, Sheng J, Zhou J, Kwon YT, Varshavsky A.

J Biol Chem. 2006 Oct 27;281(43):32559-73. Epub 2006 Aug 30.

Supplemental Content

Support Center