Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 101

1.

Consequences of a deficit in vitamin B6 biosynthesis de novo for hormone homeostasis and root development in Arabidopsis.

Boycheva S, Dominguez A, Rolcik J, Boller T, Fitzpatrick TB.

Plant Physiol. 2015 Jan;167(1):102-17. doi: 10.1104/pp.114.247767. Epub 2014 Dec 4.

2.

PDX1 is essential for vitamin B6 biosynthesis, development and stress tolerance in Arabidopsis.

Titiz O, Tambasco-Studart M, Warzych E, Apel K, Amrhein N, Laloi C, Fitzpatrick TB.

Plant J. 2006 Dec;48(6):933-46.

4.

Analysis of the Arabidopsis rsr4-1/pdx1-3 mutant reveals the critical function of the PDX1 protein family in metabolism, development, and vitamin B6 biosynthesis.

Wagner S, Bernhardt A, Leuendorf JE, Drewke C, Lytovchenko A, Mujahed N, Gurgui C, Frommer WB, Leistner E, Fernie AR, Hellmann H.

Plant Cell. 2006 Jul;18(7):1722-35. Epub 2006 Jun 9.

5.

The short-rooted vitamin B6-deficient mutant pdx1 has impaired local auxin biosynthesis.

Chen H, Xiong L.

Planta. 2009 May;229(6):1303-10. doi: 10.1007/s00425-009-0912-8. Epub 2009 Mar 22.

PMID:
19306104
6.

The pseudoenzyme PDX1.2 boosts vitamin B6 biosynthesis under heat and oxidative stress in Arabidopsis.

Moccand C, Boycheva S, Surriabre P, Tambasco-Studart M, Raschke M, Kaufmann M, Fitzpatrick TB.

J Biol Chem. 2014 Mar 21;289(12):8203-16. doi: 10.1074/jbc.M113.540526. Epub 2014 Feb 6.

7.

Regulation of the Arabidopsis thaliana vitamin B6 biosynthesis genes by abiotic stress.

Denslow SA, Rueschhoff EE, Daub ME.

Plant Physiol Biochem. 2007 Feb;45(2):152-61. Epub 2007 Jan 20.

PMID:
17344055
8.

Structural definition of the lysine swing in Arabidopsis thaliana PDX1: Intermediate channeling facilitating vitamin B6 biosynthesis.

Robinson GC, Kaufmann M, Roux C, Fitzpatrick TB.

Proc Natl Acad Sci U S A. 2016 Oct 4;113(40):E5821-E5829. Epub 2016 Sep 19.

9.

Complex assembly and metabolic profiling of Arabidopsis thaliana plants overexpressing vitamin B₆ biosynthesis proteins.

Leuendorf JE, Osorio S, Szewczyk A, Fernie AR, Hellmann H.

Mol Plant. 2010 Sep;3(5):890-903. doi: 10.1093/mp/ssq041. Epub 2010 Jul 30.

11.

Vitamin B6 deficient plants display increased sensitivity to high light and photo-oxidative stress.

Havaux M, Ksas B, Szewczyk A, Rumeau D, Franck F, Caffarri S, Triantaphylidès C.

BMC Plant Biol. 2009 Nov 10;9:130. doi: 10.1186/1471-2229-9-130.

12.

Identification and characterization of a pyridoxal reductase involved in the vitamin B6 salvage pathway in Arabidopsis.

Herrero S, González E, Gillikin JW, Vélëz H, Daub ME.

Plant Mol Biol. 2011 May;76(1-2):157-69. doi: 10.1007/s11103-011-9777-x. Epub 2011 May 1.

PMID:
21533842
13.

Disturbed local auxin homeostasis enhances cellular anisotropy and reveals alternative wiring of auxin-ethylene crosstalk in Brachypodium distachyon seminal roots.

Pacheco-Villalobos D, Sankar M, Ljung K, Hardtke CS.

PLoS Genet. 2013 Jun;9(6):e1003564. doi: 10.1371/journal.pgen.1003564. Epub 2013 Jun 20.

14.

Functional analysis of PDX2 from Arabidopsis, a glutaminase involved in vitamin B6 biosynthesis.

Tambasco-Studart M, Tews I, Amrhein N, Fitzpatrick TB.

Plant Physiol. 2007 Jun;144(2):915-25. Epub 2007 Apr 27.

15.

Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex.

Rigas S, Ditengou FA, Ljung K, Daras G, Tietz O, Palme K, Hatzopoulos P.

New Phytol. 2013 Mar;197(4):1130-41. doi: 10.1111/nph.12092. Epub 2012 Dec 18.

16.

Enhanced levels of vitamin B(6) increase aerial organ size and positively affect stress tolerance in Arabidopsis.

Raschke M, Boycheva S, Crèvecoeur M, Nunes-Nesi A, Witt S, Fernie AR, Amrhein N, Fitzpatrick TB.

Plant J. 2011 May;66(3):414-32. doi: 10.1111/j.1365-313X.2011.04499.x. Epub 2011 Mar 1.

17.

Vitamin B6 biosynthesis in higher plants.

Tambasco-Studart M, Titiz O, Raschle T, Forster G, Amrhein N, Fitzpatrick TB.

Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13687-92. Epub 2005 Sep 12.

18.

Enhancement of vitamin B(6) levels in seeds through metabolic engineering.

Chen H, Xiong L.

Plant Biotechnol J. 2009 Sep;7(7):673-81. doi: 10.1111/j.1467-7652.2009.00433.x. Epub 2009 Jul 27.

19.

Auxin overproduction in shoots cannot rescue auxin deficiencies in Arabidopsis roots.

Chen Q, Dai X, De-Paoli H, Cheng Y, Takebayashi Y, Kasahara H, Kamiya Y, Zhao Y.

Plant Cell Physiol. 2014 Jun;55(6):1072-9. doi: 10.1093/pcp/pcu039. Epub 2014 Feb 21.

20.

The co-chaperone p23 controls root development through the modulation of auxin distribution in the Arabidopsis root meristem.

D'Alessandro S, Golin S, Hardtke CS, Lo Schiavo F, Zottini M.

J Exp Bot. 2015 Aug;66(16):5113-22. doi: 10.1093/jxb/erv330. Epub 2015 Jul 10.

Supplemental Content

Support Center