Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 126

1.

Dynamic structural changes underpin photoconversion of a blue/green cyanobacteriochrome between its dark and photoactivated states.

Cornilescu CC, Cornilescu G, Burgie ES, Markley JL, Ulijasz AT, Vierstra RD.

J Biol Chem. 2014 Jan 31;289(5):3055-65. doi: 10.1074/jbc.M113.531053. Epub 2013 Dec 11.

2.

Crystallographic and electron microscopic analyses of a bacterial phytochrome reveal local and global rearrangements during photoconversion.

Burgie ES, Wang T, Bussell AN, Walker JM, Li H, Vierstra RD.

J Biol Chem. 2014 Aug 29;289(35):24573-87. doi: 10.1074/jbc.M114.571661. Epub 2014 Jul 8.

3.

Structural basis for the photoconversion of a phytochrome to the activated Pfr form.

Ulijasz AT, Cornilescu G, Cornilescu CC, Zhang J, Rivera M, Markley JL, Vierstra RD.

Nature. 2010 Jan 14;463(7278):250-4. doi: 10.1038/nature08671.

4.

A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus.

Rockwell NC, Njuguna SL, Roberts L, Castillo E, Parson VL, Dwojak S, Lagarias JC, Spiller SC.

Biochemistry. 2008 Jul 8;47(27):7304-16. doi: 10.1021/bi800088t. Epub 2008 Jun 13.

5.

A photo-labile thioether linkage to phycoviolobilin provides the foundation for the blue/green photocycles in DXCF-cyanobacteriochromes.

Burgie ES, Walker JM, Phillips GN Jr, Vierstra RD.

Structure. 2013 Jan 8;21(1):88-97. doi: 10.1016/j.str.2012.11.001. Epub 2012 Dec 6.

6.

Reconstitution of blue-green reversible photoconversion of a cyanobacterial photoreceptor, PixJ1, in phycocyanobilin-producing Escherichia coli.

Yoshihara S, Shimada T, Matsuoka D, Zikihara K, Kohchi T, Tokutomi S.

Biochemistry. 2006 Mar 21;45(11):3775-84.

PMID:
16533061
7.

The D-ring, not the A-ring, rotates in Synechococcus OS-B' phytochrome.

Song C, Psakis G, Kopycki J, Lang C, Matysik J, Hughes J.

J Biol Chem. 2014 Jan 31;289(5):2552-62. doi: 10.1074/jbc.M113.520031. Epub 2013 Dec 10.

8.

Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2164g3' [corrected].

Lim S, Rockwell NC, Martin SS, Dallas JL, Lagarias JC, Ames JB.

Photochem Photobiol Sci. 2014 Jun;13(6):951-62. doi: 10.1039/c3pp50442e. Erratum in: Photochem Photobiol Sci. 2014 Sep;13(9):1360.

9.

Crystal Structure of Deinococcus Phytochrome in the Photoactivated State Reveals a Cascade of Structural Rearrangements during Photoconversion.

Burgie ES, Zhang J, Vierstra RD.

Structure. 2016 Mar 1;24(3):448-57. doi: 10.1016/j.str.2016.01.001. Epub 2016 Feb 4.

10.

Characterization of two thermostable cyanobacterial phytochromes reveals global movements in the chromophore-binding domain during photoconversion.

Ulijasz AT, Cornilescu G, von Stetten D, Kaminski S, Mroginski MA, Zhang J, Bhaya D, Hildebrandt P, Vierstra RD.

J Biol Chem. 2008 Jul 25;283(30):21251-66. doi: 10.1074/jbc.M801592200. Epub 2008 May 14.

11.

Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome.

Burgie ES, Bussell AN, Walker JM, Dubiel K, Vierstra RD.

Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10179-84. doi: 10.1073/pnas.1403096111. Epub 2014 Jun 30.

12.

Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state.

Cornilescu G, Ulijasz AT, Cornilescu CC, Markley JL, Vierstra RD.

J Mol Biol. 2008 Nov 7;383(2):403-13. doi: 10.1016/j.jmb.2008.08.034. Epub 2008 Aug 22.

13.

Phototransformation of the red light sensor cyanobacterial phytochrome 2 from Synechocystis species depends on its tongue motifs.

Anders K, Gutt A, Gärtner W, Essen LO.

J Biol Chem. 2014 Sep 12;289(37):25590-600. doi: 10.1074/jbc.M114.562082. Epub 2014 Jul 10.

14.

Light-Regulated Synthesis of Cyclic-di-GMP by a Bidomain Construct of the Cyanobacteriochrome Tlr0924 (SesA) without Stable Dimerization.

Blain-Hartung M, Rockwell NC, Lagarias JC.

Biochemistry. 2017 Nov 21;56(46):6145-6154. doi: 10.1021/acs.biochem.7b00734. Epub 2017 Nov 8.

PMID:
29072834
15.

Cyanochromes are blue/green light photoreversible photoreceptors defined by a stable double cysteine linkage to a phycoviolobilin-type chromophore.

Ulijasz AT, Cornilescu G, von Stetten D, Cornilescu C, Velazquez Escobar F, Zhang J, Stankey RJ, Rivera M, Hildebrandt P, Vierstra RD.

J Biol Chem. 2009 Oct 23;284(43):29757-72. doi: 10.1074/jbc.M109.038513. Epub 2009 Aug 11.

16.

Color Tuning in Red/Green Cyanobacteriochrome AnPixJ: Photoisomerization at C15 Causes an Excited-State Destabilization.

Song C, Narikawa R, Ikeuchi M, Gärtner W, Matysik J.

J Phys Chem B. 2015 Jul 30;119(30):9688-95. doi: 10.1021/acs.jpcb.5b04655. Epub 2015 Jul 9.

PMID:
26115331
17.

Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes.

Rockwell NC, Martin SS, Feoktistova K, Lagarias JC.

Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):11854-9. doi: 10.1073/pnas.1107844108. Epub 2011 Jun 28.

18.

Cyanobacterial phytochrome-like PixJ1 holoprotein shows novel reversible photoconversion between blue- and green-absorbing forms.

Yoshihara S, Katayama M, Geng X, Ikeuchi M.

Plant Cell Physiol. 2004 Dec;45(12):1729-37.

PMID:
15653792
19.

The Crystal Structures of the N-terminal Photosensory Core Module of Agrobacterium Phytochrome Agp1 as Parallel and Anti-parallel Dimers.

Nagano S, Scheerer P, Zubow K, Michael N, Inomata K, Lamparter T, Krauß N.

J Biol Chem. 2016 Sep 23;291(39):20674-91. doi: 10.1074/jbc.M116.739136. Epub 2016 Jul 26.

20.

A Red/Green Cyanobacteriochrome Sustains Its Color Despite a Change in the Bilin Chromophore's Protonation State.

Song C, Velazquez Escobar F, Xu XL, Narikawa R, Ikeuchi M, Siebert F, Gärtner W, Matysik J, Hildebrandt P.

Biochemistry. 2015 Sep 29;54(38):5839-48. doi: 10.1021/acs.biochem.5b00735. Epub 2015 Sep 16.

PMID:
26335286

Supplemental Content

Support Center