Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 116

1.

Spreading of a prion domain from cell-to-cell by vesicular transport in Caenorhabditis elegans.

Nussbaum-Krammer CI, Park KW, Li L, Melki R, Morimoto RI.

PLoS Genet. 2013 Mar;9(3):e1003351. doi: 10.1371/journal.pgen.1003351. Epub 2013 Mar 28.

2.

Horizontal Transmission of Cytosolic Sup35 Prions by Extracellular Vesicles.

Liu S, Hossinger A, Hofmann JP, Denner P, Vorberg IM.

MBio. 2016 Jul 12;7(4). pii: e00915-16. doi: 10.1128/mBio.00915-16.

3.

Investigating the spreading and toxicity of prion-like proteins using the metazoan model organism C. elegans.

Nussbaum-Krammer CI, Neto MF, Brielmann RM, Pedersen JS, Morimoto RI.

J Vis Exp. 2015 Jan 8;(95):52321. doi: 10.3791/52321.

4.

Distinct amino acid compositional requirements for formation and maintenance of the [PSI⁺] prion in yeast.

MacLea KS, Paul KR, Ben-Musa Z, Waechter A, Shattuck JE, Gruca M, Ross ED.

Mol Cell Biol. 2015 Mar;35(5):899-911. doi: 10.1128/MCB.01020-14. Epub 2014 Dec 29.

5.

[PSI+] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain.

Toombs JA, Liss NM, Cobble KR, Ben-Musa Z, Ross ED.

PLoS One. 2011;6(7):e21953. doi: 10.1371/journal.pone.0021953. Epub 2011 Jul 8.

6.

Suppression of polyglutamine toxicity by the yeast Sup35 prion domain in Drosophila.

Li LB, Xu K, Bonini NM.

J Biol Chem. 2007 Dec 28;282(52):37694-701. Epub 2007 Oct 23.

7.

Sequence features governing aggregation or degradation of prion-like proteins.

Cascarina SM, Paul KR, Machihara S, Ross ED.

PLoS Genet. 2018 Jul 13;14(7):e1007517. doi: 10.1371/journal.pgen.1007517. eCollection 2018 Jul.

8.

Caenorhabditis elegans as a model system for studying non-cell-autonomous mechanisms in protein-misfolding diseases.

Nussbaum-Krammer CI, Morimoto RI.

Dis Model Mech. 2014 Jan;7(1):31-9. doi: 10.1242/dmm.013011. Review.

9.

Prions on the run: How extracellular vesicles serve as delivery vehicles for self-templating protein aggregates.

Liu S, Hossinger A, Göbbels S, Vorberg IM.

Prion. 2017 Mar 4;11(2):98-112. doi: 10.1080/19336896.2017.1306162. Review.

10.

The role of the N-terminal oligopeptide repeats of the yeast Sup35 prion protein in propagation and transmission of prion variants.

Shkundina IS, Kushnirov VV, Tuite MF, Ter-Avanesyan MD.

Genetics. 2006 Feb;172(2):827-35. Epub 2005 Nov 4.

11.

Distinct Prion Domain Sequences Ensure Efficient Amyloid Propagation by Promoting Chaperone Binding or Processing In Vivo.

Langlois CR, Pei F, Sindi SS, Serio TR.

PLoS Genet. 2016 Nov 4;12(11):e1006417. doi: 10.1371/journal.pgen.1006417. eCollection 2016 Nov.

12.

Molecular basis for transmission barrier and interference between closely related prion proteins in yeast.

Afanasieva EG, Kushnirov VV, Tuite MF, Ter-Avanesyan MD.

J Biol Chem. 2011 May 6;286(18):15773-80. doi: 10.1074/jbc.M110.183889. Epub 2011 Mar 15.

13.

Effects of Q/N-rich, polyQ, and non-polyQ amyloids on the de novo formation of the [PSI+] prion in yeast and aggregation of Sup35 in vitro.

Derkatch IL, Uptain SM, Outeiro TF, Krishnan R, Lindquist SL, Liebman SW.

Proc Natl Acad Sci U S A. 2004 Aug 31;101(35):12934-9. Epub 2004 Aug 23.

14.

Effect of charged residues in the N-domain of Sup35 protein on prion [PSI+] stability and propagation.

Bondarev SA, Shchepachev VV, Kajava AV, Zhouravleva GA.

J Biol Chem. 2013 Oct 4;288(40):28503-13. doi: 10.1074/jbc.M113.471805. Epub 2013 Aug 21.

15.

GPI anchoring facilitates propagation and spread of misfolded Sup35 aggregates in mammalian cells.

Speare JO, Offerdahl DK, Hasenkrug A, Carmody AB, Baron GS.

EMBO J. 2010 Feb 17;29(4):782-94. doi: 10.1038/emboj.2009.392. Epub 2010 Jan 7.

16.

Functional role of Tia1/Pub1 and Sup35 prion domains: directing protein synthesis machinery to the tubulin cytoskeleton.

Li X, Rayman JB, Kandel ER, Derkatch IL.

Mol Cell. 2014 Jul 17;55(2):305-18. doi: 10.1016/j.molcel.2014.05.027. Epub 2014 Jun 26.

17.

Heterologous gln/asn-rich proteins impede the propagation of yeast prions by altering chaperone availability.

Yang Z, Hong JY, Derkatch IL, Liebman SW.

PLoS Genet. 2013;9(1):e1003236. doi: 10.1371/journal.pgen.1003236. Epub 2013 Jan 24.

18.

Autophagy protects against de novo formation of the [PSI+] prion in yeast.

Speldewinde SH, Doronina VA, Grant CM.

Mol Biol Cell. 2015 Dec 15;26(25):4541-51. doi: 10.1091/mbc.E15-08-0548. Epub 2015 Oct 21.

19.

Dissection and design of yeast prions.

Osherovich LZ, Cox BS, Tuite MF, Weissman JS.

PLoS Biol. 2004 Apr;2(4):E86. Epub 2004 Mar 23.

20.

A regulatory role of the Rnq1 nonprion domain for prion propagation and polyglutamine aggregates.

Kurahashi H, Ishiwata M, Shibata S, Nakamura Y.

Mol Cell Biol. 2008 May;28(10):3313-23. doi: 10.1128/MCB.01900-07. Epub 2008 Mar 10.

Supplemental Content

Support Center