Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 110


A novel single-cell screening platform reveals proteome plasticity during yeast stress responses.

Breker M, Gymrek M, Schuldiner M.

J Cell Biol. 2013 Mar 18;200(6):839-50. doi: 10.1083/jcb.201301120. Erratum in: J Cell Biol. 2013 Apr 15;201(2):353.


LoQAtE--Localization and Quantitation ATlas of the yeast proteomE. A new tool for multiparametric dissection of single-protein behavior in response to biological perturbations in yeast.

Breker M, Gymrek M, Moldavski O, Schuldiner M.

Nucleic Acids Res. 2014 Jan;42(Database issue):D726-30. doi: 10.1093/nar/gkt933. Epub 2013 Oct 22.


Yeast Proteome Dynamics from Single Cell Imaging and Automated Analysis.

Chong YT, Koh JL, Friesen H, Duffy SK, Cox MJ, Moses A, Moffat J, Boone C, Andrews BJ.

Cell. 2015 Jun 4;161(6):1413-24. doi: 10.1016/j.cell.2015.04.051. Erratum in: Cell. 2015 Jul 2;162(1):221. Duffy, Kaluarachchi [corrected to Duffy, Supipi Kaluarachchi].


CYCLoPs: A Comprehensive Database Constructed from Automated Analysis of Protein Abundance and Subcellular Localization Patterns in Saccharomyces cerevisiae.

Koh JL, Chong YT, Friesen H, Moses A, Boone C, Andrews BJ, Moffat J.

G3 (Bethesda). 2015 Apr 15;5(6):1223-32. doi: 10.1534/g3.115.017830.


Proteome-wide screens in Saccharomyces cerevisiae using the yeast GFP collection.

Chong YT, Cox MJ, Andrews B.

Adv Exp Med Biol. 2012;736:169-78. doi: 10.1007/978-1-4419-7210-1_8.


High-resolution mapping of protein concentration reveals principles of proteome architecture and adaptation.

Levy ED, Kowarzyk J, Michnick SW.

Cell Rep. 2014 May 22;7(4):1333-40. doi: 10.1016/j.celrep.2014.04.009. Epub 2014 May 10.


A chemostat array enables the spatio-temporal analysis of the yeast proteome.

Dénervaud N, Becker J, Delgado-Gonzalo R, Damay P, Rajkumar AS, Unser M, Shore D, Naef F, Maerkl SJ.

Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15842-7. doi: 10.1073/pnas.1308265110. Epub 2013 Sep 9.


System-wide perturbation analysis with nearly complete coverage of the yeast proteome by single-shot ultra HPLC runs on a bench top Orbitrap.

Nagaraj N, Kulak NA, Cox J, Neuhauser N, Mayr K, Hoerning O, Vorm O, Mann M.

Mol Cell Proteomics. 2012 Mar;11(3):M111.013722. doi: 10.1074/mcp.M111.013722. Epub 2011 Oct 20.


Quantitative proteomics and transcriptomics of anaerobic and aerobic yeast cultures reveals post-transcriptional regulation of key cellular processes.

de Groot MJ, Daran-Lapujade P, van Breukelen B, Knijnenburg TA, de Hulster EA, Reinders MJ, Pronk JT, Heck AJ, Slijper M.

Microbiology. 2007 Nov;153(Pt 11):3864-78.


Proteome survey reveals modularity of the yeast cell machinery.

Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G.

Nature. 2006 Mar 30;440(7084):631-6. Epub 2006 Jan 22.


Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise.

Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL, Weissman JS.

Nature. 2006 Jun 15;441(7095):840-6. Epub 2006 May 14.


Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources.

Zhao S, Zhao X, Zou H, Fu J, Du G, Zhou J, Chen J.

J Proteomics. 2014 Apr 14;101:102-12. doi: 10.1016/j.jprot.2014.01.031. Epub 2014 Feb 12.


A dynamic model of proteome changes reveals new roles for transcript alteration in yeast.

Lee MV, Topper SE, Hubler SL, Hose J, Wenger CD, Coon JJ, Gasch AP.

Mol Syst Biol. 2011 Jul 19;7:514. doi: 10.1038/msb.2011.48.


Proteomic analysis of the increased stress tolerance of saccharomyces cerevisiae encapsulated in liquid core alginate-chitosan capsules.

Westman JO, Taherzadeh MJ, Franzén CJ.

PLoS One. 2012;7(11):e49335. doi: 10.1371/journal.pone.0049335. Epub 2012 Nov 9.


The diversity of protein turnover and abundance under nitrogen-limited steady-state conditions in Saccharomyces cerevisiae.

Helbig AO, Daran-Lapujade P, van Maris AJ, de Hulster EA, de Ridder D, Pronk JT, Heck AJ, Slijper M.

Mol Biosyst. 2011 Dec;7(12):3316-26. doi: 10.1039/c1mb05250k. Epub 2011 Oct 10.


PhosphoGRID: a database of experimentally verified in vivo protein phosphorylation sites from the budding yeast Saccharomyces cerevisiae.

Stark C, Su TC, Breitkreutz A, Lourenco P, Dahabieh M, Breitkreutz BJ, Tyers M, Sadowski I.

Database (Oxford). 2010;2010:bap026. doi: 10.1093/database/bap026. Epub 2010 Jan 28.


Differential proteome-metabolome profiling of YCA1-knock-out and wild type cells reveals novel metabolic pathways and cellular processes dependent on the yeast metacaspase.

Ždralević M, Longo V, Guaragnella N, Giannattasio S, Timperio AM, Zolla L.

Mol Biosyst. 2015 Jun;11(6):1573-83. doi: 10.1039/c4mb00660g.


Comparative proteome analysis of Saccharomyces cerevisiae: a global overview of in vivo targets of the yeast activator protein 1.

Jun H, Kieselbach T, Jönsson LJ.

BMC Genomics. 2012 Jun 9;13:230. doi: 10.1186/1471-2164-13-230.


Friend or food: different cues to the autophagosomal proteome.

Becker AC, Bunkenborg J, Eisenberg T, Harder LM, Schroeder S, Madeo F, Andersen JS, Dengjel J.

Autophagy. 2012 Jun;8(6):995-6. doi: 10.4161/auto.20286. Epub 2012 May 10.

Supplemental Content

Support Center