Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 240

1.

Burning fire-prone Mediterranean shrublands: immediate changes in soil microbial community structure and ecosystem functions.

Goberna M, García C, Insam H, Hernández MT, Verdú M.

Microb Ecol. 2012 Jul;64(1):242-55. doi: 10.1007/s00248-011-9995-4. Epub 2011 Dec 28.

PMID:
22202889
2.

Responses of active bacterial and fungal communities in soils under winter wheat to different fertilizer and pesticide regimens.

Girvan MS, Bullimore J, Ball AS, Pretty JN, Osborn AM.

Appl Environ Microbiol. 2004 May;70(5):2692-701.

3.

Land-use change and soil type are drivers of fungal and archaeal communities in the Pampa biome.

Lupatini M, Jacques RJ, Antoniolli ZI, Suleiman AK, Fulthorpe RR, Roesch LF.

World J Microbiol Biotechnol. 2013 Feb;29(2):223-33. doi: 10.1007/s11274-012-1174-3. Epub 2012 Sep 29.

PMID:
23054698
4.

Post-fire soil functionality and microbial community structure in a Mediterranean shrubland subjected to experimental drought.

Hinojosa MB, Parra A, Laudicina VA, Moreno JM.

Sci Total Environ. 2016 Dec 15;573:1178-1189. doi: 10.1016/j.scitotenv.2016.03.117. Epub 2016 Apr 5.

PMID:
27055924
5.

Divergent extremes but convergent recovery of bacterial and archaeal soil communities to an ongoing subterranean coal mine fire.

Lee SH, Sorensen JW, Grady KL, Tobin TC, Shade A.

ISME J. 2017 Jun;11(6):1447-1459. doi: 10.1038/ismej.2017.1. Epub 2017 Mar 10.

6.

Impact of elevated CO₂ and N addition on bacteria, fungi, and archaea in a marsh ecosystem with various types of plants.

Lee SH, Kim SY, Ding W, Kang H.

Appl Microbiol Biotechnol. 2015 Jun;99(12):5295-305. doi: 10.1007/s00253-015-6385-8. Epub 2015 Jan 22.

PMID:
25605423
7.

Organic layer serves as a hotspot of microbial activity and abundance in Arctic tundra soils.

Lee SH, Jang I, Chae N, Choi T, Kang H.

Microb Ecol. 2013 Feb;65(2):405-14. doi: 10.1007/s00248-012-0125-8. Epub 2012 Sep 15.

PMID:
22983497
8.

Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands.

Mayor ÁG, Goirán SB, Vallejo VR, Bautista S.

Sci Total Environ. 2016 Dec 15;573:1209-1216. doi: 10.1016/j.scitotenv.2016.03.139. Epub 2016 Apr 5.

PMID:
27060055
9.

Shifts in the abundance and community structure of soil ammonia oxidizers in a wet sclerophyll forest under long-term prescribed burning.

Long XE, Chen C, Xu Z, He JZ.

Sci Total Environ. 2014 Feb 1;470-471:578-86. doi: 10.1016/j.scitotenv.2013.10.011. Epub 2013 Oct 26.

PMID:
24176706
10.

Bacterial, archaeal and fungal succession in the forefield of a receding glacier.

Zumsteg A, Luster J, Göransson H, Smittenberg RH, Brunner I, Bernasconi SM, Zeyer J, Frey B.

Microb Ecol. 2012 Apr;63(3):552-64. doi: 10.1007/s00248-011-9991-8. Epub 2011 Dec 13.

PMID:
22159526
11.

Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO(2) and warming in an Australian native grassland soil.

Hayden HL, Mele PM, Bougoure DS, Allan CY, Norng S, Piceno YM, Brodie EL, Desantis TZ, Andersen GL, Williams AL, Hovenden MJ.

Environ Microbiol. 2012 Dec;14(12):3081-96. doi: 10.1111/j.1462-2920.2012.02855.x. Epub 2012 Oct 8.

PMID:
23039205
12.

Soil Bacterial and Fungal Communities Show Distinct Recovery Patterns during Forest Ecosystem Restoration.

Sun S, Li S, Avera BN, Strahm BD, Badgley BD.

Appl Environ Microbiol. 2017 Jun 30;83(14). pii: e00966-17. doi: 10.1128/AEM.00966-17. Print 2017 Jul 15.

13.

Seasonal changes in nitrogen-cycle gene abundances and in bacterial communities in acidic forest soils.

Jung J, Yeom J, Han J, Kim J, Park W.

J Microbiol. 2012 Jun;50(3):365-73. doi: 10.1007/s12275-012-1465-2. Epub 2012 Jun 30.

PMID:
22752898
14.

Soil microbial community successional patterns during forest ecosystem restoration.

Banning NC, Gleeson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, Murphy DV.

Appl Environ Microbiol. 2011 Sep;77(17):6158-64. doi: 10.1128/AEM.00764-11. Epub 2011 Jul 1.

15.

Structure and function of alpine and arctic soil microbial communities.

Nemergut DR, Costello EK, Meyer AF, Pescador MY, Weintraub MN, Schmidt SK.

Res Microbiol. 2005 Aug;156(7):775-84. Epub 2005 Apr 7. Review.

PMID:
15922566
16.

Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region.

Kim D, Park HJ, Kim JH, Youn UJ, Yang YH, Casanova-Katny A, Vargas CM, Venegas EZ, Park H, Hong SG.

J Basic Microbiol. 2018 Jun;58(6):513-522. doi: 10.1002/jobm.201700470. Epub 2018 Mar 23.

PMID:
29570816
17.

Post-fire spatial patterns of soil nitrogen mineralization and microbial abundance.

Smithwick EA, Naithani KJ, Balser TC, Romme WH, Turner MG.

PLoS One. 2012;7(11):e50597. doi: 10.1371/journal.pone.0050597. Epub 2012 Nov 30.

18.

Environmental drivers of soil microbial community distribution at the Koiliaris Critical Zone Observatory.

Tsiknia M, Paranychianakis NV, Varouchakis EA, Moraetis D, Nikolaidis NP.

FEMS Microbiol Ecol. 2014 Oct;90(1):139-52. doi: 10.1111/1574-6941.12379. Epub 2014 Jul 29.

19.

Phosphate addition and plant species alters microbial community structure in acidic upland grassland soil.

Rooney DC, Clipson NJ.

Microb Ecol. 2009 Jan;57(1):4-13. doi: 10.1007/s00248-008-9399-2. Epub 2008 Jun 25.

PMID:
18581037
20.

Supplemental Content

Support Center