Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 428

1.

Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3.

Mackinnon AC, Gibbons MA, Farnworth SL, Leffler H, Nilsson UJ, Delaine T, Simpson AJ, Forbes SJ, Hirani N, Gauldie J, Sethi T.

Am J Respir Crit Care Med. 2012 Mar 1;185(5):537-46. doi: 10.1164/rccm.201106-0965OC. Epub 2011 Nov 17.

2.

Arsenic trioxide inhibits transforming growth factor-β1-induced fibroblast to myofibroblast differentiation in vitro and bleomycin induced lung fibrosis in vivo.

Luo F, Zhuang Y, Sides MD, Sanchez CG, Shan B, White ES, Lasky JA.

Respir Res. 2014 Apr 24;15:51. doi: 10.1186/1465-9921-15-51.

3.
4.

MAP3K19 Is a Novel Regulator of TGF-β Signaling That Impacts Bleomycin-Induced Lung Injury and Pulmonary Fibrosis.

Boehme SA, Franz-Bacon K, DiTirro DN, Ly TW, Bacon KB.

PLoS One. 2016 May 4;11(5):e0154874. doi: 10.1371/journal.pone.0154874. eCollection 2016.

5.

Syndecan-2 exerts antifibrotic effects by promoting caveolin-1-mediated transforming growth factor-β receptor I internalization and inhibiting transforming growth factor-β1 signaling.

Shi Y, Gochuico BR, Yu G, Tang X, Osorio JC, Fernandez IE, Risquez CF, Patel AS, Shi Y, Wathelet MG, Goodwin AJ, Haspel JA, Ryter SW, Billings EM, Kaminski N, Morse D, Rosas IO.

Am J Respir Crit Care Med. 2013 Oct 1;188(7):831-41. doi: 10.1164/rccm.201303-0434OC.

6.

Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-β signaling.

Oruqaj G, Karnati S, Vijayan V, Kotarkonda LK, Boateng E, Zhang W, Ruppert C, Günther A, Shi W, Baumgart-Vogt E.

Proc Natl Acad Sci U S A. 2015 Apr 21;112(16):E2048-57. doi: 10.1073/pnas.1415111112. Epub 2015 Apr 6.

7.

Aortic carboxypeptidase-like protein (ACLP) enhances lung myofibroblast differentiation through transforming growth factor β receptor-dependent and -independent pathways.

Tumelty KE, Smith BD, Nugent MA, Layne MD.

J Biol Chem. 2014 Jan 31;289(5):2526-36. doi: 10.1074/jbc.M113.502617. Epub 2013 Dec 16.

8.

miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis.

Liu G, Friggeri A, Yang Y, Milosevic J, Ding Q, Thannickal VJ, Kaminski N, Abraham E.

J Exp Med. 2010 Aug 2;207(8):1589-97. doi: 10.1084/jem.20100035. Epub 2010 Jul 19.

9.

Angiotensin-TGF-beta 1 crosstalk in human idiopathic pulmonary fibrosis: autocrine mechanisms in myofibroblasts and macrophages.

Uhal BD, Kim JK, Li X, Molina-Molina M.

Curr Pharm Des. 2007;13(12):1247-56. Review.

PMID:
17504233
10.

M2 macrophages induce EMT through the TGF-β/Smad2 signaling pathway.

Zhu L, Fu X, Chen X, Han X, Dong P.

Cell Biol Int. 2017 Sep;41(9):960-968. doi: 10.1002/cbin.10788. Epub 2017 Jul 9.

PMID:
28493530
11.

Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis.

Wang XM, Zhang Y, Kim HP, Zhou Z, Feghali-Bostwick CA, Liu F, Ifedigbo E, Xu X, Oury TD, Kaminski N, Choi AM.

J Exp Med. 2006 Dec 25;203(13):2895-906. Epub 2006 Dec 18.

12.

Inhibition of Wnt/β-catenin signaling suppresses bleomycin-induced pulmonary fibrosis by attenuating the expression of TGF-β1 and FGF-2.

Chen X, Shi C, Meng X, Zhang K, Li X, Wang C, Xiang Z, Hu K, Han X.

Exp Mol Pathol. 2016 Aug;101(1):22-30. doi: 10.1016/j.yexmp.2016.04.003. Epub 2016 Apr 23.

13.

Lysophosphatidic acid receptor-2 deficiency confers protection against bleomycin-induced lung injury and fibrosis in mice.

Huang LS, Fu P, Patel P, Harijith A, Sun T, Zhao Y, Garcia JG, Chun J, Natarajan V.

Am J Respir Cell Mol Biol. 2013 Dec;49(6):912-22. doi: 10.1165/rcmb.2013-0070OC.

14.
15.

Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis.

Kim KK, Wei Y, Szekeres C, Kugler MC, Wolters PJ, Hill ML, Frank JA, Brumwell AN, Wheeler SE, Kreidberg JA, Chapman HA.

J Clin Invest. 2009 Jan;119(1):213-24. doi: 10.1172/JCI36940. Epub 2008 Dec 22.

16.

The small heat-shock protein αB-crystallin is essential for the nuclear localization of Smad4: impact on pulmonary fibrosis.

Bellaye PS, Wettstein G, Burgy O, Besnard V, Joannes A, Colas J, Causse S, Marchal-Somme J, Fabre A, Crestani B, Kolb M, Gauldie J, Camus P, Garrido C, Bonniaud P.

J Pathol. 2014 Mar;232(4):458-72. doi: 10.1002/path.4314.

PMID:
24307592
17.

Tubastatin ameliorates pulmonary fibrosis by targeting the TGFβ-PI3K-Akt pathway.

Saito S, Zhuang Y, Shan B, Danchuk S, Luo F, Korfei M, Guenther A, Lasky JA.

PLoS One. 2017 Oct 18;12(10):e0186615. doi: 10.1371/journal.pone.0186615. eCollection 2017.

18.

Cadherin-11 contributes to pulmonary fibrosis: potential role in TGF-β production and epithelial to mesenchymal transition.

Schneider DJ, Wu M, Le TT, Cho SH, Brenner MB, Blackburn MR, Agarwal SK.

FASEB J. 2012 Feb;26(2):503-12. doi: 10.1096/fj.11-186098. Epub 2011 Oct 11.

19.

FK506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis.

Staab-Weijnitz CA, Fernandez IE, Knüppel L, Maul J, Heinzelmann K, Juan-Guardela BM, Hennen E, Preissler G, Winter H, Neurohr C, Hatz R, Lindner M, Behr J, Kaminski N, Eickelberg O.

Am J Respir Crit Care Med. 2015 Aug 15;192(4):455-67. doi: 10.1164/rccm.201412-2233OC.

20.

Contribution of the anaphylatoxin receptors, C3aR and C5aR, to the pathogenesis of pulmonary fibrosis.

Gu H, Fisher AJ, Mickler EA, Duerson F 3rd, Cummings OW, Peters-Golden M, Twigg HL 3rd, Woodruff TM, Wilkes DS, Vittal R.

FASEB J. 2016 Jun;30(6):2336-50. doi: 10.1096/fj.201500044. Epub 2016 Mar 8.

Supplemental Content

Support Center