Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 109

1.

Roles of subcellular Na+ channel distributions in the mechanism of cardiac conduction.

Tsumoto K, Ashihara T, Haraguchi R, Nakazawa K, Kurachi Y.

Biophys J. 2011 Feb 2;100(3):554-563. doi: 10.1016/j.bpj.2010.12.3716.

2.

Role of gap junctions in the propagation of the cardiac action potential.

Rohr S.

Cardiovasc Res. 2004 May 1;62(2):309-22. Review.

PMID:
15094351
3.

Ischemia-related subcellular redistribution of sodium channels enhances the proarrhythmic effect of class I antiarrhythmic drugs: a simulation study.

Tsumoto K, Ashihara T, Haraguchi R, Nakazawa K, Kurachi Y.

PLoS One. 2014 Oct 3;9(10):e109271. doi: 10.1371/journal.pone.0109271. eCollection 2014.

4.

Localization of sodium channels in intercalated disks modulates cardiac conduction.

Kucera JP, Rohr S, Rudy Y.

Circ Res. 2002 Dec 13;91(12):1176-82.

5.

Distribution of cardiac sodium channels in clusters potentiates ephaptic interactions in the intercalated disc.

Hichri E, Abriel H, Kucera JP.

J Physiol. 2018 Feb 15;596(4):563-589. doi: 10.1113/JP275351. Epub 2018 Jan 9.

7.

Homogenization of an electrophysiological model for a strand of cardiac myocytes with gap-junctional and electric-field coupling.

Hand PE, Peskin CS.

Bull Math Biol. 2010 Aug;72(6):1408-24. doi: 10.1007/s11538-009-9499-2. Epub 2010 Jan 5.

PMID:
20049544
8.

Influence of dynamic gap junction resistance on impulse propagation in ventricular myocardium: a computer simulation study.

Henriquez AP, Vogel R, Muller-Borer BJ, Henriquez CS, Weingart R, Cascio WE.

Biophys J. 2001 Oct;81(4):2112-21.

9.

Effects of Na(+) channel and cell coupling abnormalities on vulnerability to reentry: a simulation study.

Qu Z, Karagueuzian HS, Garfinkel A, Weiss JN.

Am J Physiol Heart Circ Physiol. 2004 Apr;286(4):H1310-21. Epub 2003 Nov 20.

11.

Cell size and communication: role in structural and electrical development and remodeling of the heart.

Spach MS, Heidlage JF, Barr RC, Dolber PC.

Heart Rhythm. 2004 Oct;1(4):500-15.

PMID:
15851207
12.

The dual effect of ephaptic coupling on cardiac conduction with heterogeneous expression of connexin 43.

Wei N, Mori Y, Tolkacheva EG.

J Theor Biol. 2016 May 21;397:103-14. doi: 10.1016/j.jtbi.2016.02.029. Epub 2016 Mar 9.

PMID:
26968493
13.

Potassium channels in the Cx43 gap junction perinexus modulate ephaptic coupling: an experimental and modeling study.

Veeraraghavan R, Lin J, Keener JP, Gourdie R, Poelzing S.

Pflugers Arch. 2016 Oct;468(10):1651-61. doi: 10.1007/s00424-016-1861-2. Epub 2016 Aug 11.

14.

Ephaptic coupling of cardiac cells through the junctional electric potential.

Copene ED, Keener JP.

J Math Biol. 2008 Aug;57(2):265-84. doi: 10.1007/s00285-008-0157-3. Epub 2008 Feb 12.

PMID:
18265985
15.

Gap junction channels and cardiac impulse propagation.

Desplantez T, Dupont E, Severs NJ, Weingart R.

J Membr Biol. 2007 Aug;218(1-3):13-28. Epub 2007 Jul 28. Review.

16.
17.
18.

Regulation of connexin43 gap junctional conductance by ventricular action potentials.

Lin X, Crye M, Veenstra RD.

Circ Res. 2003 Sep 19;93(6):e63-73. Epub 2003 Aug 28.

PMID:
12946947
19.

The cardiac sodium channel displays differential distribution in the conduction system and transmural heterogeneity in the murine ventricular myocardium.

Remme CA, Verkerk AO, Hoogaars WM, Aanhaanen WT, Scicluna BP, Annink C, van den Hoff MJ, Wilde AA, van Veen TA, Veldkamp MW, de Bakker JM, Christoffels VM, Bezzina CR.

Basic Res Cardiol. 2009 Sep;104(5):511-22. doi: 10.1007/s00395-009-0012-8. Epub 2009 Mar 3.

20.

Supplemental Content

Support Center