Format
Sort by
Items per page

Send to

Choose Destination

Links from PubMed

Items: 1 to 20 of 100

1.
3.

The central role of a SNRK2 kinase in sulfur deprivation responses.

Gonzalez-Ballester D, Pollock SV, Pootakham W, Grossman AR.

Plant Physiol. 2008 May;147(1):216-27. doi: 10.1104/pp.108.116137. Epub 2008 Mar 7.

4.

Phosphate and sulfur limitation responses in the chloroplast of Chlamydomonas reinhardtii.

Irihimovitch V, Yehudai-Resheff S.

FEMS Microbiol Lett. 2008 Jun;283(1):1-8. doi: 10.1111/j.1574-6968.2008.01154.x. Epub 2008 Apr 9. Review.

5.

Genetic interactions between regulators of Chlamydomonas phosphorus and sulfur deprivation responses.

Moseley JL, Gonzalez-Ballester D, Pootakham W, Bailey S, Grossman AR.

Genetics. 2009 Mar;181(3):889-905. doi: 10.1534/genetics.108.099382. Epub 2008 Dec 15.

7.

Insights into the acclimation of Chlamydomonas reinhardtii to sulfur deprivation.

Pollock SV, Pootakham W, Shibagaki N, Moseley JL, Grossman AR.

Photosynth Res. 2005 Dec;86(3):475-89. Epub 2005 Nov 15. Review.

PMID:
16307308
8.

Regulation of synthesis and degradation of a sulfolipid under sulfur-starved conditions and its physiological significance in Chlamydomonas reinhardtii.

Sugimoto K, Tsuzuki M, Sato N.

New Phytol. 2010 Feb;185(3):676-86. doi: 10.1111/j.1469-8137.2009.03115.x. Epub 2009 Dec 14.

9.

Regulation of alternative oxidase 1 in Chlamydomonas reinhardtii during sulfur starvation.

Zalutskaya Z, Filina V, Ostroukhova M, Ermilova E.

Eur J Protistol. 2018 Apr;63:26-33. doi: 10.1016/j.ejop.2018.01.001. Epub 2018 Jan 12.

PMID:
29407609
10.
11.

Regulation of sulfur deprivation-induced expression of the ferredoxin-encoding FDX5 gene Chlamydomonas reinhardtii in aerobic conditions.

Zalutskaya Z, Minaeva E, Filina V, Ostroukhova M, Ermilova E.

Plant Physiol Biochem. 2018 Feb;123:18-23. doi: 10.1016/j.plaphy.2017.11.024. Epub 2017 Dec 2.

PMID:
29220735
12.

The LPB1 gene is important for acclimation of Chlamydomonas reinhardtii to phosphorus and sulfur deprivation.

Chang CW, Moseley JL, Wykoff D, Grossman AR.

Plant Physiol. 2005 May;138(1):319-29. Epub 2005 Apr 22.

13.

Tiered regulation of sulfur deprivation responses in Chlamydomonas reinhardtii and identification of an associated regulatory factor.

Aksoy M, Pootakham W, Pollock SV, Moseley JL, González-Ballester D, Grossman AR.

Plant Physiol. 2013 May;162(1):195-211. doi: 10.1104/pp.113.214593. Epub 2013 Mar 12.

14.

The diurnal logic of the expression of the chloroplast genome in Chlamydomonas reinhardtii.

Idoine AD, Boulouis A, Rupprecht J, Bock R.

PLoS One. 2014 Oct 1;9(10):e108760. doi: 10.1371/journal.pone.0108760. eCollection 2014.

15.
16.
18.

Chlamydomonas reinhardtii encodes a single sigma70-like factor which likely functions in chloroplast transcription.

Bohne AV, Irihimovitch V, Weihe A, Stern DB.

Curr Genet. 2006 May;49(5):333-40. Epub 2006 Feb 2.

PMID:
16453112
19.

Production of Recombinant Proteins in the Chloroplast of the Green Alga Chlamydomonas reinhardtii.

Guzmán-Zapata D, Macedo-Osorio KS, Almaraz-Delgado AL, Durán-Figueroa N, Badillo-Corona JA.

Methods Mol Biol. 2016;1385:69-85. doi: 10.1007/978-1-4939-3289-4_5.

PMID:
26614282
20.

Intercistronic expression elements (IEE) from the chloroplast of Chlamydomonas reinhardtii can be used for the expression of foreign genes in synthetic operons.

Macedo-Osorio KS, Pérez-España VH, Garibay-Orijel C, Guzmán-Zapata D, Durán-Figueroa NV, Badillo-Corona JA.

Plant Mol Biol. 2018 Nov;98(4-5):303-317. doi: 10.1007/s11103-018-0776-z. Epub 2018 Sep 17.

PMID:
30225747

Supplemental Content

Support Center