Entorhinal inputs to hippocampal CA1 and dentate gyrus in the rat: a current-source-density study

J Neurophysiol. 1995 Jun;73(6):2392-403. doi: 10.1152/jn.1995.73.6.2392.

Abstract

1. Laminar profiles of the average evoked potentials and current-source-density analysis were used to study the input provided by the medial perforant path (PP) to the hippocampus in the urethan-anesthetized rat. 2. Stimulation of the PP activated an early latency sink in the middle molecular layer of the dentate gyrus (DG) and in the stratum lacunosum-moleculare in CA1. The DG current sink was generated by excitatory synaptic currents activated by the PP on dentate granule cells. In the normal rat, the peak current sink in the DG was typically five times greater than that of CA1. However, the CA1 sink could be distinguished from the DG sink in several ways: 1) it peaked when the DG sink was subsiding; 2) it showed paired-pulse facilitation, whereas the DG sink did not; and 3) in rats in which the DG was lesioned by local colchicine injection, the DG sink was reduced much more than the CA1 sink. 3. The PP afferents to CA1 required a slightly higher stimulus threshold (> 100 microA) for activation than those projecting to the DG granule cells (< 30 microA). The onset latency of the early CA1 sink (2.5 +/- 0.2 ms, mean +/- SE) was also slightly longer than that of the DG sink (1.7 +/- 0.1 ms), suggesting that the axons of entorhinal layer III cells that project to CA1 have a slightly lower conduction velocity than the axons of the layer II cells that project to the DG. 4. The short-latency current sink activated by the PP in the distal dendritic layers of CA1 was likely provided by excitatory currents at the distal apical dendrites of CA1 pyramidal cells. The accompanying current source was mainly confined to stratum radiatum and appeared not to involve the cell body layer. Thus the electrotonic current spread may not be effective enough to depolarize the cell body or axon hillock. Contribution of interneurons to the above source-sink profile is possible, with the provision that these interneurons must have dendritic processes that span strata radiatum and lacunosum moleculare. 5. Extracellular field recordings provided no evidence that PP evoked a short-latency (< 9 ms) CA1-generated population spike, even with the use of micropipettes filled with mM bicuculline. Similarly, unit recordings in CA1 revealed only long-latency (9-17 ms) unit firing after PP stimulation, corresponding to a late, di/trisynaptic excitation of CA1 via the Schaffer collaterals.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Dendrites / physiology
  • Electrophysiology
  • Entorhinal Cortex / physiology*
  • Evoked Potentials
  • Hippocampus / physiology*
  • Long-Term Potentiation
  • Male
  • Neural Pathways / physiology*
  • Rats
  • Rats, Inbred Strains
  • Time Factors