Format

Send to

Choose Destination
Front Neuroinform. 2016 Aug 3;10:32. doi: 10.3389/fninf.2016.00032. eCollection 2016.

Embedding Task-Based Neural Models into a Connectome-Based Model of the Cerebral Cortex.

Author information

1
Section on Brain Imaging and Modeling, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesda, MD, USA; Neural Bytes LLCWashington, DC, USA.
2
Section on Brain Imaging and Modeling, National Institute on Deafness and Other Communication Disorders, National Institutes of Health Bethesda, MD, USA.

Abstract

A number of recent efforts have used large-scale, biologically realistic, neural models to help understand the neural basis for the patterns of activity observed in both resting state and task-related functional neural imaging data. An example of the former is The Virtual Brain (TVB) software platform, which allows one to apply large-scale neural modeling in a whole brain framework. TVB provides a set of structural connectomes of the human cerebral cortex, a collection of neural processing units for each connectome node, and various forward models that can convert simulated neural activity into a variety of functional brain imaging signals. In this paper, we demonstrate how to embed a previously or newly constructed task-based large-scale neural model into the TVB platform. We tested our method on a previously constructed large-scale neural model (LSNM) of visual object processing that consisted of interconnected neural populations that represent, primary and secondary visual, inferotemporal, and prefrontal cortex. Some neural elements in the original model were "non-task-specific" (NS) neurons that served as noise generators to "task-specific" neurons that processed shapes during a delayed match-to-sample (DMS) task. We replaced the NS neurons with an anatomical TVB connectome model of the cerebral cortex comprising 998 regions of interest interconnected by white matter fiber tract weights. We embedded our LSNM of visual object processing into corresponding nodes within the TVB connectome. Reciprocal connections between TVB nodes and our task-based modules were included in this framework. We ran visual object processing simulations and showed that the TVB simulator successfully replaced the noise generation originally provided by NS neurons; i.e., the DMS tasks performed with the hybrid LSNM/TVB simulator generated equivalent neural and fMRI activity to that of the original task-based models. Additionally, we found partial agreement between the functional connectivities using the hybrid LSNM/TVB model and the original LSNM. Our framework thus presents a way to embed task-based neural models into the TVB platform, enabling a better comparison between empirical and computational data, which in turn can lead to a better understanding of how interacting neural populations give rise to human cognitive behaviors.

KEYWORDS:

The Virtual Brain; brain; computational modeling; fMRI; human; neural networks; visual object processing

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central Icon for ModelDB
Loading ...
Support Center