Format

Send to

Choose Destination
Front Comput Neurosci. 2013 Jun 6;7:75. doi: 10.3389/fncom.2013.00075. eCollection 2013.

Probabilistic inference of short-term synaptic plasticity in neocortical microcircuits.

Author information

1
Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh Edinburgh, UK.

Abstract

Short-term synaptic plasticity is highly diverse across brain area, cortical layer, cell type, and developmental stage. Since short-term plasticity (STP) strongly shapes neural dynamics, this diversity suggests a specific and essential role in neural information processing. Therefore, a correct characterization of short-term synaptic plasticity is an important step towards understanding and modeling neural systems. Phenomenological models have been developed, but they are usually fitted to experimental data using least-mean-square methods. We demonstrate that for typical synaptic dynamics such fitting may give unreliable results. As a solution, we introduce a Bayesian formulation, which yields the posterior distribution over the model parameters given the data. First, we show that common STP protocols yield broad distributions over some model parameters. Using our result we propose a experimental protocol to more accurately determine synaptic dynamics parameters. Next, we infer the model parameters using experimental data from three different neocortical excitatory connection types. This reveals connection-specific distributions, which we use to classify synaptic dynamics. Our approach to demarcate connection-specific synaptic dynamics is an important improvement on the state of the art and reveals novel features from existing data.

KEYWORDS:

experimental design; neocortical circuits; parameter estimation; probabilistic inference; short-term synaptic plasticity

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central Icon for ModelDB
Loading ...
Support Center