Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 1990 Sep;87(17):6718-22.

Biophysical model of a Hebbian synapse.

Author information

1
Department of Psychology, Yale University, New Haven, CT.

Abstract

We present a biophysical model of electrical and Ca(2+) dynamics following activation of N-methyl-D-aspartate (NMDA) receptors located on a dendritic spine. The model accounts for much of the phenomenology of the induction of long-term potentiation at a Hebbian synapse in hippocampal region CA1. Computer simulations suggested four important functions of spines in this Ca(2+)-dependent synaptic modification: (i) compartmentalizing transient changes in [Ca(2+)] to just those synapses that satisfy the conjunctive requirement for synaptic modification; (ii) isolating the spine head from changes in the [Ca(2+)] at the dendritic shaft; (iii) amplifying the concentration changes at those synapses; and (iv) increasing the voltage dependence of the processes underlying long term potentiation induction. This proposed role of spines in the regulation of Ca(2+) dynamics contrasts with traditional approaches to spine function that have stressed electronic properties. This model can be used to explore the computational implications of Hebbian synapses.

PMID:
2168555
PMCID:
PMC54608
DOI:
10.1073/pnas.87.17.6718
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center